Potential trends in snowmelt-generated peak streamflows in a warming climate

Rui Wang¹, Mukesh Kumar¹ and Timothy E. Link²

¹Nicholas School of Environment, Duke University, Durham, North Carolina, USA, ²College of Natural Resources, Department of Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, Idaho, USA

Abstract

Previously reported impacts of climate warming on streamflow peaks are varied, and the controls on the variations remain unclear. Using physically based linked snowpack and watershed hydrological models, we evaluated the potential changes in seasonal snowmelt-generated streamflow peak (Q_{max}) due to warming in a small semiarid mountain watershed. Results suggest that the trend in Q_{max} with warming is strongly governed by the conversion of precipitation phase, accumulated snow amount prior to the melt season, and snowmelt rate during the ablation period. Under a warming climate, the trend in Q_{max} is expected to be decreasing for relatively warm regions but increasing for cold regions. Climate regimes that are most susceptible to dominant precipitation phase transitions from snow to rain are likely to experience larger decreases in Q_{max} with warming. This study serves as a first step toward assessing the varied impacts on Q_{max} due to warming vis-à-vis the specific catchment hydroclimatology.

1. Introduction

Human and agricultural water use in most of the western United States is heavily dependent on snowmelt-generated streamflows [Bales et al., 2006]. To sustainably manage water resources and develop strategies to adapt to climate changes, it is imperative to understand the impacts of climate warming on streamflow dynamics in these cold regions. In this context, impact of climate changes on timing of snowmelt-generated Q_{max} and amount of snowmelt runoff has been widely studied [Barnett et al., 2005; Ashfaq et al., 2013; Benedetti, 2008; Das et al., 2011; Day, 2009; Hidalgo et al., 2009; Rauscher et al., 2008; Shrestha et al., 2014; Stewart et al., 2005]. Climate warming may also impact the magnitude of seasonal snowmelt-generated Q_{max} [Molini et al., 2011; Jefferson et al., 2008; Bouwer et al., 2008], an important variable for applications such as reservoir operations, flood plain mapping and risk analyses, contaminant transport, nutrient transport, terrestrial carbon cycling, and aquatic and riparian ecology. In this context, using model results Shrestha et al. [2011, 2014] and Wang et al. [2010] reported an increase in Q_{max} under a climate warming scenario, while Stonefelt et al. [2000] reported a decrease in Q_{max}. Statistical analyses of long-term historical data sets also showed the possibility of both a decreasing [Chiew et al., 2013] and an increasing [Ng et al., 2007] trend in Q_{max} with climate warming. Based on the aforementioned studies, the impact of increasing temperature on the magnitude of Q_{max} appears to vary both in sign and magnitude, and the controls on its variations remain unclear. Molini et al. [2011] made significant headway in the understanding of Q_{max} trends and indicated that either increasing or decreasing trends may occur depending on the relative length of cold versus warm seasons. The study was based on a synthetic data set, and assumed that (i) precipitation during the cold and warm seasons are entirely in the form of snow and rain, respectively; (ii) precipitation and melt rates are constant during the cold and warm seasons, respectively; and (iii) the melt rate magnitude is linearly proportional to the warm season length. The existence of aforementioned trends vis-à-vis changes in air temperature and snow-to-rain transition remains to be examined.

This study evaluates the potential trends in Q_{max} with warming air temperatures in a small semiarid mountain catchment. Additionally, it addresses the following four questions: (1) Is there a trend in the variation of snowmelt-generated Q_{max} with increasing air temperatures, and what are the major controls on this trend? (2) How does the volume and temporal distribution of snow and rain events mediate the trend in Q_{max}? (3) How are trends in Q_{max} affected by the seasonality of air temperature? and (4) Are the changes in Q_{max} due to climate warming likely to vary across the western U.S. and can these variations be explained based on site-specific climatological characteristics?
2. Data and Methods

A linked snow model ISNOBAL [Marks et al., 1999] and hydrologic model PIHM (Penn State Integrated Hydrologic Model) [Qu and Duffy, 2007; Kumar, 2009] was used to evaluate the influence of warming temperatures on Q_{max}. ISNOBAL is a two-layer coupled energy and mass balance snow model designed for accumulation and melt simulations over digital elevation model grids. PIHM is a fully distributed hydrologic model designed for spatially explicit simulations of interception, overland flow, soil moisture, evapotranspiration, groundwater, and streamflow at multiple scales [Chen et al., 2015; Kumar and Duffy, 2015; Yu et al., 2014].

The linked model was applied in the Reynolds Mountain East (RME) watershed (Figure S1 in supporting information), a field laboratory in southwestern Idaho. The watershed is 0.39 km2 in area and ranges in elevation from 2027 m to 2137 m. Approximately 30% of the watershed is forested and the remainder consists of dry meadows and mixed shrub species. The watershed received about 75% of its precipitation in the form of snow during the study period. The site was selected because of its high-quality data [Reba et al., 2011] and extensive validation of both ISNOBAL [Marks and Winstral, 2001; Marks et al., 2002] and PIHM [Kumar, 2003; Wang et al., 2013] in the watershed.

Snowmelt and streamflow in the RME watershed was simulated using a 25 year (1984–2008 water year) hourly data set of precipitation, air temperature, dew point temperature, relative humidity, and wind speed [Reba et al., 2011]. Precipitation was classified as snow when the dew point temperature was below 0°C [Marks et al., 2013]. Net radiation was calculated using the toprad and trad functionalities in the Image Processing Workbench software [Image Processing Workbench, 2016]. Validation of the linked model to effectively simulate annual runoff, annual maximum and hourly streamflow, annual maximum and hourly snow water equivalent (SWE), soil moisture, and groundwater depth is shown in Figures S2, S3, and S4. Notably, the model was able to adequately capture the peak streamflows during the 25 year simulation period, as indicated by root mean square error (RMSE), coefficients of determination (CD), and Nash-Sutcliffe efficiency (NSE) of 0.02 m/s, 0.84, and 0.82, respectively (Figure S2).

Four suites of numerical experiments were conducted to address the four questions outlined in section 1. The experiments consisted of a combination of different warming scenarios and climate regimes, each with three cases that represented different warming period during a year. Details of each experiment is as follows:

1. To evaluate the trends in Q_{max} with warming, Experiment 1 employed five scenarios with different mean air temperatures. The temperature series for each of the five scenarios were obtained by adding ΔT (ranging from 0 to +4°C in 1°C increments) to the base meteorological data series, to assess the full range of temperature increases that are projected within the next century [New et al., 2011]. To explore the relative role of snow accumulation and melt season on Q_{max} trends, ΔT was applied in the entire year (Case 1), only in the cold season (Case 2) and only in the warm season (Case 3). The cold and warm seasons were defined as the period from October–March and April–September, respectively. Specifications of the five warming scenarios and the three seasonality cases are shown in Table S1 (see supporting information).

2. To explore the role of snow and rain events on the Q_{max} trends, Experiment 2 consisted of a base climatological time series and two additional meteorological regimes with different volumes and temporal distribution of snow and rain events. For each regime, five warming scenarios and three cases, identical to the ones used in Experiment 1, were considered. Precipitation events were reordered during the cold season to produce two distinct time series such that the magnitude of snow-to-rain transition (STRT) volumes with increasing temperatures would be different relative to the base configuration. While all the three regimes had 25% of the annual precipitation in form of rain for the initial temperature series, ratios of precipitation in the temperature range ($T < -4°C$) and ($-4°C \leq T < 0°C$) for the three regimes were 32:43, 65:10, and 10:65, respectively. As such, the first/third regime was expected to experience the smallest/largest STRT with ΔT increasing from 0 to +4°C. The three STRT regimes were then repeated for three additional rescaled precipitation series with magnitudes equal to 50%, 150%, and 200% of the base set cases. In all, Experiment 2 involved a total of 180 25 year hydrologic simulations (three rain/snow distribution × four precipitation magnitude = 12 regimes, with each having five warming scenarios and three cases, see Table S2).

3. Experiment 3 also considered five warming scenarios and three cases, with ΔT being identical to those used in Experiments 1 and 2. These scenarios were implemented for 36 (6×6) different climatological regimes representing either warmer or colder cold and warm seasons relative to the base temperature series. The 6×6 gradually warming cold/warm season regimes were generated by keeping temperatures...
Table 1. Average Annual Precipitation (P), Cold Season Temperature (Tc), Warm Season Temperature (Tw), Snow-to-Rain Conversion Rate (ΔS), Absolute Variation in Qmax (ΔQmax) and Relative Variation in Qmax (ΔQmax,%) With 2°C Increases in air Temperatures for RME and 11 SNOTEL Sites in Experiment 4

<table>
<thead>
<tr>
<th>Site Name</th>
<th>State</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation (m)</th>
<th>P (mm)</th>
<th>Tc (°C)</th>
<th>Tw (°C)</th>
<th>ΔS (%)</th>
<th>ΔQmax,a (mm)</th>
<th>ΔQmax (%)</th>
<th>Simulation Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>RME</td>
<td>ID</td>
<td>-116.6</td>
<td>2059</td>
<td>966</td>
<td>-1.1</td>
<td>10.4</td>
<td>30</td>
<td>-0.30</td>
<td>-23.8</td>
<td>-20.0</td>
<td>1984–2008</td>
</tr>
<tr>
<td>Fry</td>
<td>AZ</td>
<td>-111.8</td>
<td>2195</td>
<td>678</td>
<td>1.9</td>
<td>14</td>
<td>29</td>
<td>-0.11</td>
<td>-19.8</td>
<td>-20.0</td>
<td>1984–2014</td>
</tr>
<tr>
<td>Ivanhoe</td>
<td>CO</td>
<td>-106.6</td>
<td>3170</td>
<td>893</td>
<td>-5.2</td>
<td>7.7</td>
<td>-9</td>
<td>0.04</td>
<td>4.4</td>
<td>4.4</td>
<td>1992–2014</td>
</tr>
<tr>
<td>Niwot</td>
<td>CO</td>
<td>-105.5</td>
<td>3021</td>
<td>820</td>
<td>-3.5</td>
<td>7.5</td>
<td>11</td>
<td>-0.14</td>
<td>-13.0</td>
<td>-13.0</td>
<td>1990–2014</td>
</tr>
<tr>
<td>Tower</td>
<td>CO</td>
<td>-106.7</td>
<td>3200</td>
<td>1480</td>
<td>-6.5</td>
<td>6.6</td>
<td>5</td>
<td>0.16</td>
<td>7.8</td>
<td>7.8</td>
<td>1986–2014</td>
</tr>
<tr>
<td>Banner Summit</td>
<td>ID</td>
<td>-115.2</td>
<td>2146</td>
<td>1030</td>
<td>-3.6</td>
<td>8.7</td>
<td>22</td>
<td>-0.19</td>
<td>-13.9</td>
<td>-13.9</td>
<td>1989–2014</td>
</tr>
<tr>
<td>Sylvan Lake</td>
<td>WY</td>
<td>-110.2</td>
<td>2566</td>
<td>975</td>
<td>-6.1</td>
<td>6.8</td>
<td>3</td>
<td>0.12</td>
<td>8.2</td>
<td>8.2</td>
<td>1984–2014</td>
</tr>
<tr>
<td>West Yellowstone</td>
<td>MT</td>
<td>-111.1</td>
<td>2042</td>
<td>608</td>
<td>-3.8</td>
<td>10.0</td>
<td>9</td>
<td>-0.07</td>
<td>-8.9</td>
<td>-8.9</td>
<td>1999–2014</td>
</tr>
<tr>
<td>Touchet</td>
<td>WA</td>
<td>-117.8</td>
<td>1685</td>
<td>1380</td>
<td>-0.1</td>
<td>10.7</td>
<td>42</td>
<td>-0.38</td>
<td>-23.2</td>
<td>-23.2</td>
<td>1984–2014</td>
</tr>
<tr>
<td>Stampede Pass</td>
<td>WA</td>
<td>-121.3</td>
<td>1173</td>
<td>2240</td>
<td>-0.7</td>
<td>8.6</td>
<td>40</td>
<td>-0.45</td>
<td>-20.1</td>
<td>-20.1</td>
<td>1984–2014</td>
</tr>
<tr>
<td>Poorman Creek</td>
<td>MT</td>
<td>-115.6</td>
<td>1555</td>
<td>1900</td>
<td>-1.3</td>
<td>10.0</td>
<td>46</td>
<td>-0.41</td>
<td>-22.7</td>
<td>-22.7</td>
<td>1999–2014</td>
</tr>
</tbody>
</table>

*Here ΔS is considered as the percentage of relative change in snowfall amount with 2°C increases in air temperatures. Simulation period for each site was determined by data availability.

3. Results and Discussion

Results from the four numerical experiments are presented thematically following the four questions outlined in section 1.

3.1. Is There a Trend in Snowmelt-Generated Qmax and What Are the Major Controls on This Trend?

Figure 1 shows the trends in Qmax for the three warming cases in Experiment 1. As the temperature during the entire year increases from Scenarios 1 to 5 (ΔT = 0 to +4°C), the 25 year average Qmax decreased from 0.13 to 0.07 m³/s (~46% reduction, Figure 1d). The variations in average Qmax can be explained based on five scenario simulations with increasing ΔT applied separately in the cold and warm seasons. As temperatures during the cold season increased from Scenarios 1 to 5 (ΔTc = 0 to +4°C), the 25 year average Qmax,ΔTc decreased from 0.13 to 0.06 m³/s (Figure 1e). This is because warmer cold seasons result in a smaller fraction of precipitation in the form of snowfall, which in turn leads to a smaller snow accumulation and Qmax,ΔTw (Figure S6, Case 2). As temperatures during the warm season increased from Scenarios 1 to 5 (ΔTw = 0 to +4°C), the 25 year average Qmax,ΔTw
increased slightly due to increase in late season melt rates (Figure 1f). This is because increases in temperatures during the warm season increases the melt rate due to increased sensible heat and longwave radiation to the snow pack, thus increasing discharge per accumulated snow amount (Figure S6, Case 3). The relative influence of these two competing controls ends up determining the trend in \(Q_{\text{max}}\). As the decrease in \(Q_{\text{max}}\) was larger than the increase in \(Q_{\text{max}}\), \(Q_{\text{max}}\) showed a decreasing trend.

3.2. How Does the Volume and Temporal Distribution of Snow and Rain Events Mediate the Trend in \(Q_{\text{max}}\)?

Results from Experiment 2 indicate that in regimes with small STRT, \(Q_{\text{max}}\) showed a very slightly increasing trend with temperature. In contrast, with increasing STRT amounts, \(Q_{\text{max}}\) showed a tendency for a decreasing trend (Figure 2). Variations in the trends are again explainable based on competition between the slope of \(Q_{\text{max}, \Delta T_w}\) and \(Q_{\text{max}, \Delta T_c}\). Consistent with the findings in section 3.1, as \(\Delta T_w\) increased from Scenarios 1 to 5, \(Q_{\text{max}, \Delta T_w}\) increased due to increasing late season melt rates (Figures 2d, 2h, and 2l). Also, \(Q_{\text{max}, \Delta T_c}\) decreased with increase in \(\Delta T_c\) due to lower snow accumulations (Figures 2c, 2g, and 2k). The decrease in \(Q_{\text{max}, \Delta T_c}\) was smaller/larger for the case with small/large STRT. As a result, \(Q_{\text{max}}\) showed an increasing trend for the small STRT regime and a decreasing trend for the large STRT regime (Figures 2b, 2f, and 2j). In addition, Figure 2 highlights that the simulated variations in \(Q_{\text{max}}\) were also a function of precipitation magnitude. For example, increase in \(Q_{\text{max}, \Delta T_w}\) between Scenarios 1 to 5 was generally larger for higher annual precipitation magnitudes, because \(Q_{\text{max}, \Delta T_w}\) in this case was not limited by the amount of snow available for melt (e.g., Figure 2h). Decrease in \(Q_{\text{max}, \Delta T_c}\) between Scenarios 1 to 5 was also larger for higher annual precipitation magnitudes due to greater decreases in snow amount with warming (e.g., Figure 2g). Based on the relative magnitude of variations in \(Q_{\text{max}, \Delta T_w}\) and \(Q_{\text{max}, \Delta T_c}\), the trend in \(Q_{\text{max}}\) was generally more obvious with increasing magnitude of annual precipitation (Figure 2f).

3.3. How is the Trend in \(Q_{\text{max}}\) Affected by the Seasonality of Air Temperature?

Results from Experiment 3 show four notable variations (Figure 3):

1. As average temperature during the warm season (\(T_w\)) increased from +5 to +15°C, \(Q_{\text{max}}\) for a given warming scenario also increased. This was mainly because higher \(T_w\) i.e., warmer melt season increased melt rates, leading to an increase in \(Q_{\text{max}}\). For climate regimes with relatively high temperatures in warm or...
cold seasons (e.g., $T_w = 15^\circ$C and $T_c = 3^\circ$C), increase in Q_{max}, ΔT_w with increasing T_w was miniscule because melt was mass, rather than energy limited.

2. As average temperature during the cold season (T_c) increased from -7.0 to 3.0°C, Q_{max} for a given scenario decreased. This was mainly because the snow accumulation amount at the end of warmer cold seasons (higher T_c) was much smaller.

3. The variation in Q_{max} with increase in temperature showed a tendency toward decreasing trends for relatively warmer warm seasons. For example, for T_c equal to -5°C in Figure 3, Q_{max} showed an increasing trend for very cold warm seasons (e.g., $T_w = 5^\circ$C), an increasing followed by a decreasing trend for warmer warm seasons (e.g., $T_w = 15^\circ$C). To explain the trends, we analyzed the variations in $Q_{\text{max}}, \Delta T_c$ and ΔT_w with increasing T_w in isolation: (a) The rate of decrease in $Q_{\text{max}}, \Delta T_c$ from Scenarios 1 to 5 increased as T_w increased from $+5$ to $+15^\circ$C (Figure 3). This was because of larger/smaller increase in $Q_{\text{max}}, \Delta T_c$ with T_w for lower/higher ΔT_c scenario (Figure 3). For scenarios with lower ΔT_c, snow volume was larger and Q_{max} increased with increasing T_w due to higher melt rates (Figure S7). In contrast, for scenarios with higher ΔT_c, snow volume was smaller and hence the peak melt was mass, rather than energy limited (Figure S7). This leads to a subdued rate of increase in $Q_{\text{max}, \Delta T_c}$ with increasing T_w. (b) The rate of increase in $Q_{\text{max}, \Delta T_w}$ from Scenarios 1 to 5 became smaller as T_w increased from $+5$ to $+15^\circ$C (Figure 3). This was mainly because for large T_w, melt for both low and high ΔT_w scenarios were limited by snow amount available for melt, thus limiting the increase in Q_{max} from Scenarios 1 to 5 (Figure S8). Hence, warmer warm seasons reduce the positive slope of $Q_{\text{max}, \Delta T_w}$ and strengthen the negative slope of $Q_{\text{max}, \Delta T_c}$, thus pushing Q_{max} variations toward a decreasing trend.

4. The variation of Q_{max} with increases in temperature showed a tendency toward decreasing trends for relatively warmer cold seasons. For example, for $T_w = 9^\circ$C in Figure 3, Q_{max} showed an increasing trend with warming for very cold cold seasons (e.g., $T_c = -7^\circ$C), an increasing followed by a decreasing trend for intermediate temperatures (e.g., $T_c = -5^\circ$C) and a decreasing trend for warmer cold seasons (e.g., $T_c = 1^\circ$C). This is because precipitation was generally in the form of snow during colder winters, thus resulting in larger snow accumulation volumes. This leads to a larger slope of increasing $Q_{\text{max}, \Delta T_w}$. In contrast, the rate of decrease in $Q_{\text{max}, \Delta T_c}$ was smaller in very cold winters due to the smaller likelihood of STRT with increasing
temperatures. Hence, colder winter regimes dampen the negative slope of Q_{max} and ΔT_c and enhance the positive slope of Q_{max}, ΔT_w, thus pushing Q_{max} toward increasing trends with warmer temperatures.

The last two highlighted variations also show that for cold climate regimes where the mean temperatures are relatively low during the entire year (e.g., $T_w = 5^\circ$C and $T_c = 7^\circ$C), changes in Q_{max} with warming is expected to be increasing, while for warmer climate regimes with higher mean temperatures (e.g., $T_w = 15^\circ$C and $T_c = 3^\circ$C), changes in Q_{max} with warming is expected to be decreasing.

3.4. Are the Changes in Q_{max} Due to Climate Warming Likely to Vary Across the Western U.S., and can These Variations be Explained Based on Site-Specific Climatological Characteristics?

Experiment 4 evaluated variations in Q_{max} over the virtual watershed (henceforth referred as $Q_{\text{max,w}}$) for a 2°C increase in air temperature at 11 SNOTEL sites (Table 1). The 2°C increase in air temperature was selected as an approximation of predicted changes 50 years into the future [New et al., 2011]. Change in $Q_{\text{max},w}$ was positive for three sites and negative for the other nine sites. While the sites covered a wide range of hydroclimatic conditions, the snow-to-rain transition rates, annual precipitation, and temporal distribution of rain versus

Figure 3. Variation in 25 year average Q_{max}, $Q_{\text{max,}\Delta T_c}$ and $Q_{\text{max,}\Delta T_w}$ from Scenarios 1 to 5 for $\Delta T/\Delta T_c/\Delta T_w$ ranging from 0 to +4°C for temperature regimes with either warmer or colder cold and warm seasons. T_c and T_w refers to average cold and warm season temperature, respectively. Shaded plots represent temperature combinations that are outside the range of typical western U.S. locations but are provided for completeness. The rate of increase/decrease in Q_{max}, $Q_{\text{max,}\Delta T_c}$ and $Q_{\text{max,}\Delta T_w}$ from Scenarios 1 to 5 are, respectively, listed in Tables S3-1, S3-2, and S3-3 in the supporting information.
snow events, the variation in trends across the sites appears to be in general agreement with the trends presented in the previous sections. For example, Q_{max} at Stampede Pass, Touchet, and Poorman Creek experienced relatively large decreases in Q_{max} with a 2°C warming because of the relatively warmer winters and higher STRT rates with increasing temperatures. In contrast, Q_{max} at Ivanhoe, Tower, and Sylvan Lakes increased with warming due to very cold winter conditions and relatively small rates of STRT. Although the rate of STRT was relatively small for the West Yellowstone site too, Q_{max} still showed a decreasing trend. This is because of the relatively low annual precipitation that mainly occurs as snow at this location, leading to relatively low total accumulations. As a result, potential increase in flow rates with warming is mass, rather than energy limited at the site. Annual precipitation at Banner Summit is similar to the annual precipitation at Sylvan Lake, but Q_{max} at Banner Summit exhibited a decreasing trend due to relatively warmer winter conditions and larger ratio of STRT. Results suggest that the trend in Q_{max} with warming is strongly determined by site-specific hydrometeorological characteristics.

4. Conclusions

The study reports the potential variations in snowmelt-generated peak streamflows (Q_{max}) in response to a warmer climate, for a wide range of temperature and precipitation regimes. The results show that the trend in Q_{max} in the RME watershed is expected to be decreasing as the climate warms. Furthermore, for altered climatological configurations, the trend in Q_{max} may become monotonically increasing, monotonically decreasing, or increasing followed by a decreasing trend. Also, the trend is likely to be increasing/decreasing for regions with relatively warm/cold temperatures. Aforementioned variations in Q_{max} trends are a result of interactions between reduced snow accumulations and increased late season melt rates with warming temperatures. Notably, the relative influence of these two competing factors are found to be strongly influenced by the seasonal variations of temperatures, precipitation magnitudes, the ratio of snowfall events, and the temporal distribution of snow and rain events. Regions susceptible to snow-to-rain transitions are expected to experience distinct decreases in Q_{max} due to warming. The changes in Q_{max} due to warming are likely to vary across the western U.S. with variations being strongly influenced by the site-specific meteorological characteristics.

It should be emphasized that this study focused on trends in long-term averaged Q_{max} generated by seasonal snowmelt processes in a small watershed. Watershed characteristics such as topography [Tennant et al., 2015a], scale [Tennant et al., 2015b], vegetation, and hydrogeology [Harder et al., 2015] may affect the specific trends noted in this research. As such, evaluating changes to peakflow generating processes across a range of scales, geologies, and hydroclimates will also be important to develop a comprehensive understanding of how climate changes may affect streamflow regimes. Despite these limitations, the results underscore the occurrence of varied trends in Q_{max} with climate warming based on site’s meteorological characteristics and highlight the need for site-based analyses to guide the development of water resource and ecosystem adaptation strategies to reduce the impacts of changing climate on Q_{max} regimes.

References

Acknowledgments

This study was supported by the Duke University start-up grant and NSF CAREER award (EAR 1454983). Preparation of this publication was also supported by the DOI NWSC through a Cooperative Agreement GS296A-A from the United States Geological Survey (USGS). Its contents are solely the responsibility of the authors and do not necessarily represent the views of funding organizations. The RME data presented in this article were generated by Northwest Watershed Research Center, USDA, and distributed by ftp://ftp.nwrc.usda.gov/public/RME_25yr_database. We thank Editor Bayani Cardenas and two anonymous reviewers for constructive comments that greatly improved this paper.

