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A B S T R A C T   

Despite the high sensitivity of water use efficiency (WUE) estimates to intracellular carbon dioxide concentra-
tions (ci) in the Flux Variance Similarity (FVS)-based partitioning method, a systematic analysis of the sensitivity 
of WUE to ci parameterizations has largely been lacking. Using high-frequency (10 Hz) eddy covariance data for 
two crop sites: wheat (Triticum aestivum L.) and canola (Brassica napus L.), we performed a sensitivity analysis of 
four ci parameterizations (constant ci value, constant ci/ca ratio, and ci/ca as square root and linear functions of 
vapor pressure deficit) and compared them with the optimized WUE approach with no adjustable parameter. The 
results illustrated the role of ci parameterizations on the evapotranspiration (ET) partitioning results (i.e., 
transpiration (T) to ET ratios). Notably, constant ci value and constant ci/ca ratio parameterizations for the 
largest considered ci values (commonly used default values in most previous studies) showed comparable T:ET 
with the optimized WUE approach. Additionally, all these three models produced reduced T:ET in wet periods 
and increased T:ET in dry periods. In contrast, square root and linear models were unable to accurately capture 
expected trends of T:ET for wet and dry periods, and also showed large discrepancies when compared with the 
optimal WUE approach. The results suggest that optimal parameterizations of ci should be derived in constant ci 
value and constant ci/ca ratio methods to accurately capture temporal variations of WUE and T:ET. The results 
also indicate the potential of the optimum model for inter-model comparison, especially in sensitivity analysis, 
for FVS partitioning in C3 species. This study provides novel insights into the implications of the choice of 
parameterization on the WUE estimations and partitioning outcomes.   

1. Introduction 

Partitioned evaporation (E) and transpiration (T) are used for mul-
tiple purposes (e.g., input, calibration, and validation) in numerous land 
surface, satellite, and hydrological models (Dong et al., 2020; Kumar 
and Duffy, 2015; Stoy et al., 2019; Villegas et al., 2014). Additionally, 
partitioning of evapotranspiration (ET) is needed for assessing man-
agement strategies to reduce non-productive water loss in agricultural 
fields to conserve water (Wagle et al., 2020b; Zhou et al., 2018) as well 
as to improve our understanding of underlying biophysical processes 
that control E and T separately (Klosterhalfen et al., 2019; Kool et al., 
2014). 

Eddy covariance (EC), the most commonly used technique to directly 
measure ecosystem-level ET, cannot provide E and T separately. Flux 
Variance Similarity (FVS)-based partitioning technique was proposed in 
the past decade to separate stomatal and non-stomatal fluxes by 

examining the correlation structure using high-frequency (i.e., 10 or 20 
Hz) EC raw data (Scanlon and Kustas, 2010; Scanlon and Sahu, 2008). 
This method offers numerous unique advantages, including spatiotem-
poral representativeness, the potential for partitioning using past EC raw 
data, and no additional data requirement other than high-frequency EC 
data. However, the requirement of high-frequency (i.e., 10 or 20 Hz) EC 
raw data and the computational complexity are some of the practical 
challenges of the FVS method. The method has shown good performance 
in diverse biomes, including grassland (Good et al., 2014; Wang et al., 
2016), forest or woody plant covers (Sulman et al., 2016; Wang et al., 
2010), various C3 and C4 grain crops (Rana et al., 2018; Scanlon and 
Kustas, 2010; Wagle et al., 2021b), sugarcane (Saccharum officinarum L.) 
(Anderson et al., 2017a), alfalfa (Medicago sativa L.) (Wagle et al., 
2020b), and fruit plantations (Peddinti and Kambhammettu, 2019; 
Skaggs et al., 2018). 

The FVS method uses estimated water use efficiency (WUE) at the 
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leaf level as the only input for partitioning. Although it has been clear 
that WUE estimates greatly influence FVS partitioning outputs (Klos-
terhalfen et al., 2019; Sulman et al., 2016; Wagle et al., 2021b), 
leaf-level WUE estimates have been derived using a single method in 
most studies. The necessity of continuous estimates of WUE is a major 
potential source of uncertainty or error for FVS-based partitioning. 

In Fluxpart – an open-source software for FVS partitioning (Skaggs 
et al., 2018), the default estimate of leaf-level WUE is computed as 
follows: 

WUE =

(
1

DR

) (
ca − ci

qa − qi

)

(1)  

where ca and qa represent ambient concentrations of carbon dioxide 
(CO2) and water vapor (H2O), respectively, and ci and qi represent 
intercellular concentrations of CO2 and H2O, respectively. The molec-
ular diffusivity (DR) ratio for H2O and CO2 fluxes through stomata is 1.6 
(Massman, 1998). Above-canopy EC tower measurements can be used to 
derive ca and qa (Scanlon and Kustas, 2010). In Fluxpart, qi is set to 
100% relative humidity and the leaf temperature is assumed to be equal 
to the above-canopy air temperature (Skaggs et al., 2018). The ci can be 
parametrized using different algorithms such as constant ci value 
(Campbell and Norman, 2012), constant ci/ca ratio (Kim et al., 2006; 
Sinclair et al., 1984), linear function of vapor pressure deficit (VPD) 
(Morison and Gifford, 1983), square root function of VPD/ca (Katul 
et al., 2009), and optimized approach (Scanlon et al., 2019). Out of these 
five WUE algorithms, four algorithms (constant ci value, constant ci/ca 
ratio, linear, and square root) have adjustable parameters to estimate ci 
(details are provided in the Methods). The optimum model does not 
have an adjustable parameter as WUE is derived solely based on EC 
statistics. 

Our recent study showed substantially different performances of 
these five WUE algorithms owing to their inherent assumptions and 
necessities (Wagle et al., 2021b). Given that a detailed investigation of 
the sensitivity of WUE algorithms to partitioned fluxes is lacking 
(Klosterhalfen et al., 2019; Sulman et al., 2016), there is a need to assess 
the sensitivity of adjustable parameters of several WUE algorithms for 
FVS partitioning. In this study, we performed a sensitivity analysis using 
five coefficients in each of the four WUE algorithms and compared them 
with the outputs of the optimum model. We hypothesized that changing 
coefficients would greatly alter WUE estimates resulting in different 
partitioned outputs (i.e., T:ET ratios) for all four WUE algorithms. The 
study provides novel insights into the role of ci parameterizations on 
partitioned outputs from the FVS-based partitioning method. 

2. Materials and methods 

2.1. Study sites and EC measurements 

This study was performed at two crop sites: wheat and canola. The 
sites are located at the United States Department of Agriculture (USDA), 
Agricultural Research Service, Grazinglands Research Laboratory near 
El Reno, Oklahoma, USA. The major soil types are the complex of 
Renfrow-Kirkland silt loams, Bethany silt loams, and Norge silt loams in 
both sites (USDA-NRCS, 1999). 

These rainfed sites experience a temperate continental climate, with 
a long-term (1981-2010) annual rainfall of ~925 mm (Wagle et al., 
2020a). Both wheat (cv. Gallagher) and canola crops were planted in 
rows (~19 cm apart) by mid-October 2016 and harvested in mid-June 
2017. Both fields were conventionally tilled. The 2016-2017 growing 
season for wheat and canola was one of the most favorable growing 
seasons (i.e., well-distributed seasonal rainfall of 517 mm and slightly 
warmer spring, with the absence of any severe drought periods). Both 
fields were managed for high yield potential using standard manage-
ment (e.g., applications of fertilizer based on soil tests and applications 
of herbicide/pesticide as needed). Maximum dry biomass 

(aboveground) was approximately 1.3 kg m− 2 for wheat and 0.82 kg 
m− 2 for canola in April. Maximum LAI was approximately 7 m2 m− 2 for 
wheat and 4.75 m2 m− 2 for canola. Grain yield was approximately 4.86 t 
ha− 1 for wheat and 1 t ha− 1 for canola (roughly 50% of the grain yield 
was lost due to shattering because of delayed harvesting caused by 
rains). 

Eddy covariance systems, comprised of a sonic anemometer (CSAT3 - 
Campbell Scientific Inc., Logan, UT, USA) and an open-path infrared gas 
analyzer (LI-7500 - LI-COR Inc., Lincoln, NE, USA), were deployed near 
the center of wheat (27.5 ha) and canola (17.2 ha) fields to collect EC 
measurements at 10 Hz frequency for the entire growing seasons. High- 
frequency (10 Hz) EC data were processed using the EddyPro software 
(LI–COR Inc., Lincoln, NE, USA) to compute 30 min values of ET. Fluxes 
with bad quality flags (i.e., the quality flag of 2) and unreliable numbers 
or statistical outliers (beyond ±3.5 SD for 14 days) were removed (Sun 
et al., 2010; Wagle and Kakani, 2014; Zeeman et al., 2010). Gaps in 
fluxes were filled using the REddyProc package (Wutzler et al., 2018). 
Details on crop growth and development, EC measurements and data 
processing, and management practices in both fields for the study period 
can be found in a previous publication (Wagle et al., 2021a). 

2.2. FVS partitioning of ET using multiple WUE algorithms, and 
sensitivity analysis 

We used high-frequency (10 Hz) EC raw data to partition ET using 
Fluxpart (source code is accessible at https://github.com/usda-ars-ussl 
/fluxpart) (Skaggs et al., 2018). Leaf-level WUE is the only input for 
FVS partitioning. However, the following different models can be used 
to parametrize ci for the estimates of leaf-level WUE in FVS partitioning:  

i) Constant ci value (Const_value): ci (kg m− 3) is computed using a 
constant value. In Fluxpart, the default constant ppm value is 280 
ppm for C3 and 130 ppm for C4 species (Campbell and Norman, 
2012). 

ci = f (ci PPM ; temperature, pressure) (2)   

Measured ci for four winter wheat cultivars under various meteoro-
logical conditions ranged from 120 to 300 ppm (Xue et al., 2004). Based 
on this finding, a range of 200 and 300 ppm was chosen for winter wheat 
for the sensitivity analysis in a previous study (Klosterhalfen et al., 
2019). In this study, we chose 220, 240, 260, 280, and 300 ppm for ci in 
both winter wheat and canola.  

ii) Constant ci/ca ratio (Const_ratio): In Fluxpart, default constant ci/ca 
ratios (k) are 0.7 for C3 (Sinclair et al., 1984) and 0.44 for C4 species 
(Kim et al., 2006). 

ci

ca
= k (3)   

To match the same proportion of ranges from constant value (220 to 
300 ppm), we computed ci for five values of k ranging from 0.55 to 0.75 
[e.g., k1 = 0.7(220/280) = 0.55 and k5 = 0.7(300/280) = 0.75].  

iii) Linear: ci/ca is derived as a linear function of vapor pressure 
deficit (VPD) 

ci

ca
= b − m ∗ VPD (4)   
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where b is ~1 (unitless) and m is 1 (Pa− 1). In Fluxpart, default values for 
the (b, m) pair are (1, 1.6e− 4) and (1, 2.7e− 4) in C3 and C4 species, 
respectively (Morison and Gifford, 1983). 

For sensitivity analysis in this study, we kept b =1 in all cases and 
changed the parameter m to match the ranges considered in constant 
value or constant ratio methods above. The value of m ranged from (m1) 
2.4e− 4 to (m5) 1.33e− 4, with m4 is equal to default value of 1.6e− 4.  

iv) Square root (sqrt): ci/ca is determined as a function of the square 
root of (VPD/ca) only in C3 species (Katul et al., 2009), due to the 
lack of equivalent relationship between ci/ca and VPD in C4 
species (Leakey et al., 2019). 

ci

ca
= 1 −

(

DR∗λ∗
VPD

ca

)0.5

(5)   

The default coefficient of λ (kg-CO2 m− 3 Pa− 1) in Fluxpart is 22e− 9. 
For sensitivity analysis, we changed the parameter λ to match ci ranges 
as considered in constant value or constant ratio methods above. The 
value of λ ranged from 49.5e− 9 to 3.82e− 9, with λ4 being equal to the 
default value of 22e− 9.  

v) Optimum (Opt): WUE is determined using the optimized approach 
(Scanlon et al., 2019) using only EC data (i.e., no parameterized 
model is required to compute ci). 

WUEopt =
DR⋅VPD⋅m −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
DR⋅VPD⋅m(ca + DR⋅VPD⋅m)

√

DR⋅VPD
(6)  

where 

m = −
σ2

cFq − Rc,qσqσcFc

σ2
qFc − Rc,qσqσcFq

(7)  

where Rqc represents the correlation coefficient for q and c. Fc and Fq 
represent c and q fluxes, respectively. σq and σc represent standard de-
viations of q and c, respectively. The Optimize approach may not be 
applicable in C4 species due to the potential inconsistent formulation of 
ci/ca ≥ 0.5 for C4 physiology (Oren et al., 1999). 

2.3. Gap filling of partitioned outputs and determining T:ET ratios 

The FVS partitioning may not yield successful partitioned outputs for 
every 30 min time interval because high-frequency EC data for all times 
may not satisfy numerous theoretical and numerical constraints (e.g., 
incompatible EC data and WUE estimates) of FVS partitioning (Scanlon 
et al., 2019). Instead of gap-filling longer data gaps by interpolation, we 
created diurnal mean (half-hourly) values of T and ET, obtained from 
Fluxpart, for each week and then summed those half-hourly binned 
values to determine the weekly average T:ET (i.e., a constant T:ET ratio 
for each week). These weekly average T:ET ratios were used to partition 
EC-measured daily ET to daily E and T. 

3. Results and discussion 

3.1. Seasonality of ET 

The seasonality of ET was similar for wheat and canola due to their 
similar crop seasonality (Fig. 1). Both crops were planted by mid- 
October and harvested in mid-June. In both crops, the magnitudes of 
ET increased with increasing crop growth during the early growing 
season. Daily ET rates decreased to <1.0 mm around mid-December 
through mid-January due to cold temperatures and lower solar radia-
tion. With increasing crop growth, rising temperature, and higher solar 
radiation, the magnitudes of ET began to increase after mid-January and 
peaked in early May for wheat and mid-May for canola, with 7-day 
average daily ET rates of approximately 5 and 4.7 mm for wheat and 
canola, respectively. The ET rates declined sharply during grain filling 
and senescence of crops. 

3.2. Sensitivity of WUE estimates to ci parameterizations 

During the peak growth period, mean diurnal (monthly average) 
patterns of WUE estimates for the range of ci parameters showed 
different magnitudes of variations for WUE algorithms (Fig. 2). For 
example, differences in WUE estimates using five ci parameterizations 
for const_value and const_ratio were substantially larger during predawn 
hours, the periods of largest WUE (negative sign convention) due to 
smallest VPD values. However, WUE estimates using different ci pa-
rameterizations for both const_value and const_ratio models were rela-
tively similar from noon to the afternoon (i.e., during periods of higher 
temperature, VPD, and solar irradiance). In both models, WUE estimates 
decreased (negative sign convention) with an increasing magnitude of 

Fig. 1. Seasonal patterns of eddy covariance measured evapotranspiration (ET) in wheat and canola for the 2016-2017 growing season. Daily rainfall data are 
also shown. 
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Fig. 2. Half-hourly binned (monthly mean) daytime patterns of water use efficiency (WUE) for different parameterizations of intercellular carbon dioxide con-
centrations in WUE algorithms for wheat and canola during peak growth (from March 15 to April 14 for both crops). 
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ci. The WUE estimates from the opt model showed similar diurnal pat-
terns as those from the const_value and const_ratio models in both wheat 
and canola. During predawn hours, the magnitudes of WUE for the opt 
model were similar to those for the largest ci parameters for const_value 
(300 ppm) and const_ratio (0.75) models. The linear model produced 
estimated WUE with no clear diurnal patterns and negligible variations 
for custom input parameters. The sqrt model yielded WUE estimates 

with a smaller diurnal pattern [i.e., slightly larger (negative sign 
convention) values during predawn hours] and smaller variations for the 
custom ci parameters as compared to const_value and const_ratio. The 
results were consistent for both wheat and canola. These results support 
the hypothesis that the selection of an appropriate coefficient in WUE 
algorithms is required to accurately partition stomatal and non-stomatal 
fluxes. 

Fig. 3. Seasonal dynamics of transpiration (T) to evapotranspiration (ET) ratios for different parameterizations of intercellular carbon dioxide concentrations in leaf- 
level water use efficiency (WUE) algorithms for wheat and canola. The T:ET ratios were derived from sums of diurnal mean values (half-hourly binned) of T and ET 
for a month. 
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Large differences in diurnal patterns of WUE estimates by different 
WUE algorithms (Fig. 2) can be attributed to differences in their sensi-
tivity to VPD. For both const_value and const_ratio, WUE is proportional 
to VPD^-1. For linear, WUE is insensitive to VPD. For sqrt, WUE is 
moderately sensitive to VPD as it is proportional to VPD^-0.5. For opt, 
WUE is not directly proportional to VPD, but it is closest to varying with 
VPD^-1 (similar to const_value and const_ratio). As a result, const_value, 
const_ratio, and opt models yielded similar diurnal patterns of WUE 
estimates. 

In four winter wheat cultivars, measured ci ranged from 120 to 300 
ppm under various soil water potential and VPD conditions (Xue et al., 
2004). Given that ci is greatly influenced by soil water status and VPD 
(Monteith and Greenwood, 1986; Turner, 1986; Xue et al., 2004), our 
results highlight that errors in temporal variations of ci estimates can 
lead to significant errors in WUE at a range of time scales. Notably, soil 
water status and VPD fluctuate over time during the growing season, 
resulting in significant impacts on gas exchange parameters. Addition-
ally, VPD fluctuates even during the same day as it increases with 
increasing air temperature during the daytime and peaks in the late 
afternoon (around 4-5 pm local time as shown in Fig. 2a, e). Greater 
stomatal limitation (i.e., partial or full stomatal closure) at higher VPD 
reduces ci, resulting in decreased stomatal conductance (gs) and net CO2 
assimilation rate (An). In addition, soil water stress may modulate WUE, 
gs, and T simultaneously (Liu et al., 2020; Turner, 1986). Thus, using 
direct measurements of leaf-level WUE could be an option for improving 
the performance of FVS partitioning (Anderson et al., 2017b; Sulman 
et al., 2016). However, upscaling of non-continuous (e.g., only a few 
days in a season) leaf-level WUE measurements to canopies and eco-
systems is a complicated process as underlying mechanisms and pro-
cesses vary at those spatial scales (Medlyn et al., 2017). 

As FVS partitioning requires continuous estimates of WUE at 30 min 
intervals, large differences in diurnal patterns of WUE for custom input 
ci within the same WUE algorithm and among WUE algorithms, as 
shown in Fig. 2, can induce large discrepancies in partitioned outputs. 
Thus, we explore this next by comparing the sensitivity of T:ET ratios. 

3.3. Differences in the seasonality of T:ET with WUE algorithms and ci 
parameterizations 

Seasonal patterns of T:ET for all WUE algorithms were consistent in 
both crops (Fig. 3). Seasonal patterns of T:ET were similar for con-
st_value, const_ratio, opt, and sqrt models. The linear model produced a 
different seasonal pattern of T:ET ratios. The T:ET ratios for const_value, 
const_ratio, opt, and sqrt models decreased in the winter months (lowest 
in February) and increased with increasing temperature and crop 
growth in spring. The T:ET ratios for the linear model increased in 
January and February and decreased from March to May for wheat, but 
they slightly decreased in January and February, increased in March, 
and decreased during April-May for canola. 

The largest discrepancy in T:ET ratios, obtained from different WUE 
algorithms, was found during the winter months. For example, monthly 
T:ET ratios from the opt model were ~0.6 compared to 0.7-0.9 found 
with the linear model for different ci parameterizations during January- 
February in wheat. Similarly, for canola in January and February, T:ET 
ratios from the opt model were 0.63 and 0.54 compared to 0.7-0.8 (for 
different ci parameterizations) obtained using the linear model. Notably, 
T:ET ratios of 0.8-0.9 for the linear model during winter months, when 
crop growth slows down and canopy coverage decreases due to physical 
damages, might be considered beyond the reasonable range. Even for 
the dry period during peak crop growth (i.e., full canopy cover), T:ET 
ratios were only around ~0.8 in canola (Wagle et al., 2021a) and maize 
(Zea mays L.) (Zhou et al., 2016). These results illustrate that the choice 
of appropriate WUE algorithms can result in large discrepancies in 
seasonal patterns of T:ET ratios. 

Additionally, differences in ci parameterizations within the same 
WUE algorithm caused large differences in monthly T:ET ratios (Fig. 3). 

Monthly T:ET ratios generally differed by approximately 10-20% for the 
smallest and largest ci parameters for all WUE algorithms in both crops. 
Monthly T:ET ratios obtained from the opt model were similar to T:ET 
ratios found with the largest ci coefficients (which were usually used as 
default values in most previous studies) for const_value or const_ratio 
models in both crops. As compared to monthly T:ET ratios obtained 
using the opt model, T:ET ratios from linear and sqrt models were larger 
for most of the ci parameters in both crops. Due to large variations in 
monthly T:ET ratios in response to input parameters throughout the 
growing season, we explore the impact of ci parameterizations in WUE 
algorithms on seasonal T:ET ratios in the next section. 

3.4. Sensitivity of seasonal T:ET ratios to ci parameterizations 

Overall, seasonal T:ET ratios in both wheat and canola increased (by 
10-15% for the range of considered ci values) with an increasing 
magnitude of ci parameterization in all four WUE algorithms (Table 1). 
Smaller input of ci yielded larger (negative sign convention) WUE values 
(Fig. 2), resulting from relatively smaller T losses, which leads to smaller 
T:ET ratios. In general, seasonal T:ET ratios were higher for sqrt and 
linear models than for const_value, const_ratio, and opt models. Lower 
WUE estimates by the sqrt and linear models (Fig. 2) resulted in higher 
T:ET ratios (i.e., higher loss of T) for those models. In comparison, the 
seasonal T:ET ratio for the opt model was 0.71 in wheat (similar to the T: 
ET ratio for c_240 ppm and k_0.65) and 0.72 in canola (similar to the T: 
ET ratio of c_300 ppm and k_0.75). 

Overall, seasonal T:ET ratios were smaller when T:ET ratios were 
determined only for the periods when partitioned fluxes were available 
for all five WUE algorithms (see T:ET ratios in parentheses in Table 1). 
However, variability in T:ET ratios with parameters still showed a 
similar variation (i.e., 13-18% for the range of considered ci values) as 
described above. 

Additionally, successful fractions of partitioned outputs declined 
with the increasing magnitude of ci in each WUE algorithm (Table 2). On 
average, the number of successful partitioned outputs decreased by 
~10% for the range of considered coefficients in both crops. This 
reduction is related to the declining magnitude of WUE to the point that 
it is less than the magnitude of Fc/Fq (see Eq. (8) in Scanlon et al., 2019) 
with increasing ci values (Fig. 2), which is theoretically not possible. 
Although the performance of different WUE algorithms may not be 

Table 1 
Seasonal average ratios of transpiration (T) to evapotranspiration (ET) for 
different parameterizations of water use efficiency (WUE) in wheat and canola. 
The T:ET ratios computed only for the periods when partitioning solutions were 
available for all algorithms are presented in parentheses.  

WUE algorithms Wheat Canola 

Const_value c_220 ppm 0.66 (0.53) 0.61 (0.51) 
c_240 ppm 0.70 (0.56) 0.61 (0.54) 
c_260 ppm 0.75 (0.60) 0.64 (0.58) 
c_280 ppm 0.77 (0.65) 0.68 (0.62) 
c_300 ppm 0.80 (0.71) 0.71 (0.67) 

Const_ratio k_0.55 0.64 (0.55) 0.59 (0.52) 
k_0.60 0.67 (0.58) 0.62 (0.55) 
k_0.65 0.71 (0.61) 0.64 (0.59) 
k_0.70 0.75 (0.65) 0.66 (0.63) 
k_0.75 0.80 (0.70) 0.70 (0.68) 

Linear m1 0.81 (0.70) 0.80 (0.70) 
m2 0.83 (0.73) 0.81 (0.73) 
m3 0.84 (0.76) 0.82 (0.76) 
m4 0.86 (0.80) 0.83 (0.79) 
m5 0.89 (0.84) 0.85 (0.83) 

Sqrt λ1 0.75 (0.63) 0.71 (0.63) 
λ2 0.77 (0.67) 0.74 (0.67) 
λ3 0.80 (0.70) 0.76 (0.70) 
λ4 0.83 (0.75) 0.79 (0.74) 
λ5 0.85 (0.80) 0.82 (0.79) 

Opt  0.71 (0.66) 0.72 (0.66)  
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judged solely based on the number of successful partitioned outputs, a 
large number of partitioned outputs are needed to accurately determine 
T:ET ratios. 

Overall, seasonal T:ET ratios varied greatly (i.e., up to >15%) when 
they were derived using all successful partitioned outputs for individual 
WUE algorithms or they were determined only for the periods when all 
WUE algorithms produced successful partitioned outputs (Table 1). 
Most studies use a single method to estimate leaf-level WUE in FVS 
partitioning. Our results demonstrate that the use of a single WUE al-
gorithm or multiple WUE algorithms to determine T:ET ratios for FVS 
partitioning can lead to large differences in seasonal T:ET ratios for 
water balance interpretations. 

Seasonal T:ET ratios found with the opt model were comparable to 
the T:ET ratios found with const_value and const_ratio models in both 
wheat and canola (Fig. S1). When compared to the opt model, the ranges 
of mean absolute percent error (MAPE) for different ci parameterizations 
in const_value and const_ratio models were 13-19% in wheat and 14- 
22% in canola (Fig. S1). In comparison, the MAPE range for different ci 
parameterizations in the linear model was 47-59% in wheat and 49-65% 
in canola. Similarly, the MAPE range for the sqrt model was 20-37% in 
wheat and 21-40% in canola. Since const_value and const_ratio models 
produce nearly identical seasonal T:ET ratios for identical ci, either of 
these models can be selected for FVS partitioning. Additionally, con-
st_value and const_ratio models yield a higher frequency of T:ET esti-
mates than does the opt model. Despite a substantially lower number of 
successful partitioning solutions, the opt model also showed its potential 
for inter-model comparison, especially in sensitivity analysis, for FVS 
partitioning in C3 species. However, the formulation constraint of ci /ca 
≥ 0.5 limits the applicability of the opt model in C4 species (Scanlon 
et al., 2019; Wagle et al., 2021b). 

3.5. Sensitivity of weekly T:ET ratios in response to rainfall and dry 
periods 

Since large ranges in seasonal patterns of T:ET ratios were found for 
different WUE algorithms, we further investigated weekly T:ET ratios for 
variable input parameters in WUE algorithms for wet and dry periods 
during peak growth (Fig. 4). Week to week T:ET variations were 

different for different WUE algorithms (Fig. 4). The T:ET ratios are larger 
during dry periods due to reduced E and smaller during wet (rain or 
irrigation) periods due to higher E loss from wet surfaces (soil, plant 
canopy, and litter). In the first week of peak growth with no rainfall and 
higher VPD (diurnal peak VPD of ~23 hPa), we observed comparable T: 
ET ratios for all five WUE algorithms in both crops. In both crops, T:ET 
ratios differed only slightly for five WUE algorithms in the second week 
that received 47 mm rainfall towards the end. Additional rainfall in the 
third week caused large discrepancies in T:ET for WUE algorithms as T: 
ET ratios decreased for const_value and const_ratio, but T:ET ratios did 
not decrease for linear and sqrt in both crops. In the fourth week of peak 
growth (no rainfall at all), T:ET ratios in wheat increased by ~10% from 
the third to the fourth week for const_value, const_ratio, and opt, but 
remained constant for linear and only increased by 2-3% for sqrt. 
Similarly, T:ET ratios in canola increased by ~30% for const_value and 
const_ratio, and 23% for opt, but only increased by ~5% for linear and 
~15% for sqrt. Similar temporal variations in T:ET ratios for con-
st_value, const_ratio, and opt models, and their ability to capture 
reduced T:ET in wet and increased T:ET in dry conditions indicate their 
greater potential to accurately partition ET into E and T in wheat and 
canola. 

As mentioned above, the opt model showed great potential to be used 
for inter-model comparison and sensitivity analysis for FVS partitioning. 
However, it is important to mention that the total number of partitioning 
attempts and successful fractions of partitioned outputs for the opt 
model was substantially lower in both wheat and canola, indicating the 
need for careful consideration of bypassing some filtering constraints for 
retrieving a large number of successful partitioning solutions. Addi-
tionally, previous studies have shown inapplicability of the opt model in 
C4 species (Scanlon et al., 2019; Wagle et al., 2021b). Particularly, the 
opt model could be more useful for mixed vegetation as upscaling of 
leaf-level measurements of WUE is challenging for mixed vegetation due 
to dissimilarities in stomatal strategies among species (Scanlon et al., 
2019). Results illustrated the poor performance of linear and sqrt models 
to accurately capture expected trends of T:ET in wet and dry periods as 
they were unable to capture reduced T:ET ratios under wet conditions, 
most probably due to estimation errors in WUE. Linear and sqrt models 
are solely based on VPD to compute ci, but variations in other drivers 
such as soil moisture can alter the performance of these models by 
influencing plant gas exchange parameters and stomatal conductance 
(Monteith and Greenwood, 1986; Turner, 1986; Xue et al., 2004). 

4. Conclusions 

A constant defined value has been usually used for parameterizing 
intercellular CO2 concentrations (ci) in four WUE algorithms (const ci 
value, const ci/ca ratio, and ci/ca as linear and square root functions of 
VPD) for FVS partitioning. In this study, we performed a sensitivity 
analysis of chosen inputs (a range of five values) for parametrizing ci on 
ET partitioning for four WUE algorithms (const_value, const_ratio, 
linear, and square root) and compared them with the outputs of the 
optimum model for inter-model comparison. Notably, the optimum 
model (i.e., optimized WUE approach based on eddy covariance statis-
tics only) has the advantage of not having an adjustable parameter for ci 
parameterization. As we hypothesized, changing ci parameters resulted 
in varied partitioned outputs (i.e., T:ET ratios), due to the direct impact 
on WUE estimates and T, for all four WUE algorithms. Seasonal T:ET 
ratios differed by 10-15% for different ci coefficients for the same WUE 
algorithm in both crops. In general, the optimum model produced mid to 
upper-range estimates of WUE and T:ET ratios as compared to con-
st_value and const_ratio. Three models (const_value, const_ratio, and 
optimum) were able to produce expected T:ET patterns during dry and 
wet periods in both wheat and canola. These results indicated the po-
tential for using const_value and const_ratio models for FVS partitioning 
by continuing to use the commonly used ci, especially as these methods 
provide more number of T:ET estimates as compared to the optimum 

Table 2 
Successful fractions of half-hourly partitioned solutions for different parame-
terizations of intercellular carbon dioxide concentrations (ci) in different water 
use efficiency (WUE) algorithms during a growing season for wheat and canola. 
Total partition attempts for the opt model were 10,073 and 9,697, while they 
were 18,876 and 17,380 for the other four WUE models in wheat and canola, 
respectively.  

WUE algorithms Successful fractions 
Wheat Canola 

Const_value c_220 ppm 0.65 0.66 
c_240 ppm 0.64 0.64 
c_260 ppm 0.61 0.62 
c_280 ppm 0.59 0.58 
c_300 ppm 0.54 0.54 

Const_ratio k_0.55 0.65 0.66 
k_0.60 0.64 0.64 
k_0.65 0.62 0.62 
k_0.70 0.60 0.60 
k_0.75 0.57 0.56 

Linear m1 0.50 0.51 
m2 0.48 0.48 
m3 0.46 0.45 
m4 0.43 0.43 
m5 0.41 0.40 

Sqrt λ1 0.61 0.62 
λ2 0.58 0.59 
λ3 0.56 0.56 
λ4 0.52 0.52 
λ5 0.48 0.48 

Opt  0.66 0.65  

P. Wagle et al.                                                                                                                                                                                                                                   



Agricultural and Forest Meteorology 328 (2023) 109254

8

model in both crops. Despite a substantially lower number of successful 
partitioned outputs, the optimum model also showed its potential for 
inter-model comparison, especially in sensitivity analysis, for FVS par-
titioning in C3 species. Linear and square root models showed poor 
performances (i.e., inability to produce variable T:ET trends in wet and 
dry periods) in both crops. Additionally, the lower success rates of linear 
and square root models due to producing more physically impossible 

values (WUE > Fc/Fq) are also further evidence of their poor perfor-
mance. Results illustrate that the choice of WUE algorithm and input 
value for ci parameterization in WUE algorithms for FVS partitioning 
can lead to large biases in partitioned fluxes. Thus, more accurate esti-
mates of ci rather than assuming a constant value in WUE algorithms to 
account for a wide range of meteorological and water stress conditions 
are needed for further improvement of the performance of the FVS 

Fig. 4. Weekly ratios of transpiration (T) to evapotranspiration (ET) for different parameterizations of intercellular carbon dioxide concentrations in water use 
efficiency (WUE) algorithms for wheat and canola during the peak growth (from March 15 to April 14 for both crops). Rainfall data are also shown. Diurnal (weekly 
average) peak VPD (hPa) values for wheat and canola, respectively, were 22.81 and 22.65, 17.02 and 16.2, 13.66 and 13.45, and 14.68 and 18.6 during the first, 
second, third, and fourth weeks, respectively. 
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partitioning method. Techniques allowing temporally complete 
coverage of ci could be immensely useful in reducing uncertainty in ci 
parameterizations. 
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