
1.  Introduction
1.1.  Background

Shallow groundwater supplies a majority of streamflow to most watersheds (Beck et al., 2013) and is the primary 
source of streamflow during seasonal low flows (Smakhtin, 2001). This mobile water resource provides an essen-
tial buffer to changes in temperature, nutrients, and precipitation (Ficklin et al., 2015) and sustains evapotranspi-
ration (ET; Yang et al., 2011) during low flow periods. Even in snow-dominated climates, the hydrologic response 
to snowmelt is mediated by groundwater (Enzminger et al., 2019) with important implications for the response 
of these systems to global warming (Tague & Grant, 2009). Because shallow groundwater contributions to low 
flows are disproportionately sensitive to changes in near-term (i.e., years and decades) climate signals (Hare 
et al., 2021), it is essential that our hydrologic models are able to predict groundwater contributions to low flows 
accurately. Unfortunately, accurate simulation of low flows and groundwater contributions to them has proven to 
be notoriously difficult in distributed, physically based land surface models (LSMs; Clark et al., 2015, Holtzman 
et al., 2020) as well as lumped, conceptual “bucket” models (i.e., rainfall-runoff models; Fowler et al., 2020).

Early LSMs described low flows as dependent on one-dimensional drainage below a soil column (Clark 
et al., 2015). This “free” drainage led to well-documented inaccuracies: too-fast drainage during wet periods, 
underestimates of seasonal storage, and the cessation of ET during short dry periods (Baker et al., 2008; Brunke 
et al., 2016; Fan et al., 2019; Kuppel et al., 2017; Miguez-Macho & Fan, 2012a, 2012b; Milly & Shmakin, 2002; 
Pokhrel et al., 2013). Though LSM researchers have introduced several mechanisms for constraining low flows, 
this additional model complexity (NOAA, 2016) has failed to generate consistent improvements in model predic-
tions (Gan et al., 2019; Yang et al., 2011). Indeed, it is often necessary to incorporate a calibrated groundwater 
module in LSMs (Fang et al., 2019; Holtzman et al., 2020) when using LSM projections in a predictive context. 
The requirement of calibration both increases the complexity of applying LSMs and (importantly) limits their 
utility in ungauged basins.
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The failure to clearly improve low flows in LSMs has been partially attributed to three issues. First, the simple 
(linear) groundwater reservoirs (e.g., Niu et al., 2007) and quasi-TOPMODEL modules (e.g., Niu et al., 2005 or 
Oleson et al., 2010) that are commonly used may lack the complexity to characterize heterogeneous watershed 
features that drive highly nonlinear streamflow processes during periods of recession (Clark et al., 2009, 2015; 
Fan et al., 2019; Rahman et al., 2019; Tashie et al., 2019). Second, the data used to parameterize these low flow 
modules are highly uncertain. For example, the hydraulic properties of the deep subsurface are typically esti-
mated according to the texture of the shallow overlying soil using a pedotransfer function (Gedney & Cox, 2003). 
Even where it is appropriate to assume a strong correlation between hydraulic properties of shallow soils and 
those of the deeper soils, regolith, and bedrock, this approach ignores macropores (Mendoza et al., 2003; Zech-
arias & Brutsaert,  1988) and is biased in non-temperate climates (Hengl et  al.,  2017; Huscroft et  al.,  2018). 
Finally, the overreliance on only one or two datasets (i.e., areal average hydraulic conductivity and/or topographic 
wetness index) to characterize a complex process heightens the likelihood that the biases and uncertainties that 
are inherent in all large datasets express themselves in model predictions (Hariri et al., 2019).

These issues are not limited to LSMs, but are also increasingly being recognized as an area of needed improvement 
in conceptual rainfall-runoff models (Fowler et al., 2020; Seibert & van Meerveld, 2016). Computationally simple 
rainfall-runoff models are often applied in climate change impact studies to inform policy and decision-making 
in a wide variety of arenas (Balkovič et al., 2018; Cui et al., 2018; de Jong et al., 2018, Emanuel, 2018; Flörke 
et al., 2018; Iqbal et al., 2018; Mahmoud & Gan, 2018). However, rainfall-runoff models tend to become increas-
ingly inaccurate during periods of hydroclimatic variability (Saft et al., 2016; Seibert & van Meerveld, 2016), 
which inhibits their utility in predicting watershed response to climate. Furthermore, most rainfall-runoff models 
require calibration of several parameters on a single objective function, which raises the issue of equifinality 
(Beven, 2006) and limits their utility in ungauged and poorly gauged basins (Boughton, 2006).

2.  Objectives
We propose to improve predictions of low flows in LSMs and conceptual rainfall-runoff models by developing 
a portable, data-driven module called Groundwater for Ungauged Basins (GrUB). To facilitate easy and broad 
adoption of this module by the modeling community, we are guided by four key practical principles:

1.	 �No calibration required: The module must be useable directly “out of the box” and easily applied in ungauged 
basins.

2.	 �Simple data requirements: The module must depend only on widely available (continental- or global-scale) 
data that requires minimal processing on the part of the model user.

3.	 �Modular: To be adaptable to a variety of LSMs and rainfall-runoff models, the module must be driven by a 
single flux, that is, common in most LSMs and rainfall-runoff models (i.e., deep recharge), and it must operate 
independently of the rest of the model structure (i.e., no feedback mechanisms).

4.	 �Computational simplicity: The module must not substantially increase the run time of LSMs (which are 
already computationally complex) or rainfall-runoff models (for which short run times are a major source of 
appeal).

Following the module development (detailed below), we incorporate GrUB into a common rainfall-runoff model 
(HBV) and assess its performance by posing the following questions:

1.	 �Does incorporating the uncalibrated GrUB module into the otherwise calibrated HBV model negatively affect 
its overall performance?

2.	 �Does GrUB reduce error and bias in predictions of low flows, especially during historically long dry periods?
3.	 �Are GrUB predictions of low flows robust to changes in the parameterization and performance of the overly-

ing hydrologic model?

The overall goal of this analysis is to use the performance of the calibrated HBV model as a benchmark against 
which to judge the relative performance of the uncalibrated GrUB module. We stress that we are not arguing that 
the uncalibrated GrUB module should be assessed as a potential replacement for the calibrated HBV module. 
Instead, we analyze the relative performance of GrUB across a wide variety of climatic and physiographic settings 
as a first step toward the future incorporation of GrUB into rainfall-runoff models in settings where calibration is 
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not possible, or into more complex, physically based LSMs that are cannot be calibrated. Following this analysis, 
we discuss the limitations of GrUB and identify potential avenues for improvement.

3.  Model Development
3.1.  Conceptual Model

In individual watersheds (or hillslopes), actual groundwater flow patterns are exceedingly complex, vary-
ing in time, place, and with antecedent conditions (Aulenbach et  al.,  2021; Tashie et  al.,  2019; Zimmer & 
McGlynn, 2017a, 2017b). Which mechanisms are dominant (and when) varies according to the specific geophys-
ical properties and climatic fluxes of a watershed (Tashie et al., 2020). Unfortunately, the practical realities of 
large-scale hydrologic and land surface modeling demand that low flow calculations must be generic (i.e., the 
same for all watersheds) and computationally efficient.

In this research, we apply a bottom-up, data driven approach to module development. Broadly, we propose that 
models that leverage a wide variety of empirical data are more likely to be transferrable among watersheds with-
out the need for calibration. We begin by identifying a class of conceptual models that incorporates a wide variety 
of physically based properties and mechanisms for which extensive empirical data are readily available. Then, we 
build a module that is simple and generic, so that it is applicable across a range of watersheds using only these 
widely available data.

Clark et  al.  (2015) identify five categories of conceptual models for groundwater behavior for application in 
LSMs: (a) free or restricted drainage; (b) conceptual buckets; (c) TOPMODEL; (d) grid-to-grid lateral flux; and 
(e) hillslope flow based on Darcy’s Law. (Grid-to-grid lateral flux does not directly generate runoff and is there-
fore not further considered here.) Free drainage and conceptual buckets generate subsurface runoff (Qsb) [L 3/t] as 
a function of storage (S) and saturated hydraulic conductivity (Ks) [LT −1]:

��� = � (�, ��)� (1)

where S is a function of modeled inputs to and outputs from the lower boundary and Ks is usually derived from 
the properties of lowest layer of the soil column. Free and restricted drainage modules were the most common 
approaches in early LSMs and remain popular (e.g., CABLE, TESSEL, Noah, and ORCHIDEE; Kowalczyk 
et al., 2013; Krinner et al., 2005; Niu et al., 2011; van den Hurk et al., 2000).

To address the poor performance of free and restricted drainage models, many LSMs (e.g., Catchment, CLM, 
JULES, MATSIRO, and Noah-MP) have conceptually incorporated variable contributing source areas (i.e., 
TOPMODEL); Beven & Kirkby, 1979), where Qsb is again a function of S and K, but also depends on catch-
ment-average topographic slope and curvature, that is, the topographic wetness index (TWI):

��� = � (�, ��, �� �)� (2)

In TOPMODEL approaches, S is again a function of modeled inputs to and outputs from the lower boundary, 
while TWI and Ks are largely derived from empirical data. TWI is calculated directly from digital elevation 
models (DEMs) and Ks varies with S, such that maximum Ks is estimated from the properties of the lowest layer 
of the soil column and decays exponentially with declining values of S (e.g., Niu et al., 2005).

Finally, flow from a representative hillslope based on Darcy’s Law has been explicitly identified as a poten-
tial mechanism for improving representation of groundwater and low flows in LSMs (Clark et al., 2015; Fan 
et al., 2019), though only one version of this mechanism has been included in any LSM to date (i.e., LM3; Subin 
et al., 2014). Broadly, a representative hillslope flow model describes Qsb as a function of S, Ks, and several topo-
graphic and geomorphic variables:

��� = � (�, ��, �, �, �, � ℎ)� (3)

where i is aquifer slope, L is stream network length [L], B is characteristic aquifer breadth [L], and Th is aquifer 
thickness [L]. (Note that B is traditionally denoted by the letter L in hillslope hydraulics equations, and Th is 
often denoted with the letter D; however, in GrUB, these terms are reserved for the naming of other parameters.) 
Once again, S [L] is a function of modeled inputs to and outputs from the lower boundary. Ks, i, B, L, and Th 
represent physical properties of the watershed for which empirical data is widely available. These empirical data 
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represent an opportunity to uniquely parameterize watersheds without cali-
bration, and without overreliance on any single dataset or set of simplifying 
assumptions that may be prone to bias. Therefore, we proceed to develop the 
GrUB module according to this approach.

3.2.  Model Equations

We begin with a continuity equation and add complexity where hydrological 
realism demands further refinement:

𝑑𝑑𝑑𝑑 = 𝑁𝑁 − 𝑞𝑞𝑠𝑠𝑠𝑠� (4)

where N [LT −1] is recharge per unit area (i.e., modeled drainage from the 
unsaturated zone in Figure 1), qsb [LT −1] is subsurface discharge from the 
hillslope per unit area, and dS [LT −1] is change in groundwater storage. Volu-
metric subsurface discharge (Qsb) [L 3] is a product of qsb, the thickness of 
the saturated aquifer at the stream-hillslope interface (H0) [L], and the total 
length of stream network (L) [L], thus:

𝑄𝑄𝑠𝑠𝑠𝑠 = 𝑞𝑞𝑠𝑠𝑠𝑠𝐻𝐻0𝐿𝐿 = 𝐾𝐾𝑠𝑠
𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝐻𝐻0𝐿𝐿� (5)

where dh/dx [-] is the hydraulic gradient and Ks is the effective saturated hydraulic conductivity of the components 
of the subsurface that are actively sustaining streamflow (i.e., the hillslope aquifer). Watershed-scale estimates of 
L can be derived from topography, remote sensing, and modeling experiments, and these data are widely available 
in public databases like the National Hydrography Dataset (NHD) (USGS, 2004). Because stream networks in 
the NHD tend to underestimate L by a factor of up to 2 in many watersheds (Godsey & Kirchner, 2014; Jensen 
et al., 2017), we rescale L by a factor of 1.5 in all watersheds for this study. This leaves 𝐴𝐴 𝐴𝐴𝑠𝑠 , dh/dx, and 𝐴𝐴 𝐴𝐴0 to be 
solved for.

As noted above, Ks in LSMs is typically estimated according to the soil texture at the bottom of the soil column 
according to a pedotransfer function and modeled to decay exponentially with depth to water table (Niu 
et al., 2005). However, pedotransfer functions are known to be highly uncertain (Freeze & Cherry, 1979; Zhang 
& Schaap, 2019) and to systematically underestimate Ks by ignoring macropores (Mendoza et al., 2003; Zech-
arias & Brutsaert, 1988). Furthermore, the exponential decay of Ks is a purely empirical relationship, that is, 
often calibrated in hydrologic models (e.g., Tague & Band, 2004). To address these pitfalls, Tashie et al. (2021) 
developed maps of a quantity they term effective Ks for the coterminous United States that: (a) accounts for the 
effects of macropores on watershed-average values of Ks; and (b) explicitly represents values of Ks as a function 
of shallow groundwater storage (S). Importantly, these empirical data illustrate that watershed-scale effective 
values of Ks covary with S, such that Ks decreases exponentially as S decreases linearly. The database gives two 
values of Ks (𝐴𝐴 𝐴𝐴𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑 and 𝐴𝐴 𝐴𝐴𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤

 ) which can be used to model Ks as a function of S in log-linear space, with Ks taking 
some minimum value (𝐴𝐴 𝐴𝐴0 ) during extremely dry conditions (S = 0): 𝐴𝐴 log

10
𝐾𝐾𝑠𝑠 = log

10
𝐾𝐾0 +

(

𝑆𝑆

𝑓𝑓

)

𝑚𝑚 , where m is an 
empirically derived constant unique to each watershed and f [-] is effective aquifer drainable porosity, which is 
set to a typical value of 0.1 where empirical data are not available. We can then solve Ks for each watershed as a 
function of static properties (K0, f, and m) and time-varying S:

𝐾𝐾𝑠𝑠 = 10
(log10𝐾𝐾0

+(
𝑆𝑆
∕𝑓𝑓)𝑚𝑚)� (6)

This dataset also has the benefit of providing an estimate of maximum saturated aquifer thickness (Th) which is 
useful for approximating the two remaining terms to be solved: dh/dx and 𝐴𝐴 𝐴𝐴0 .

Extensive literature exists deriving analytical solutions to dh/dx and 𝐴𝐴 𝐴𝐴0 as functions of Th, S, N, and drawdown 
time, with each set of solutions applying its own set of assumptions and approximations (Troch et al., 2013). 
Broadly, the water table elevation profile (h(x)) of a fully recharged hillslope aquifer is “flat” (H0 = Th = HB), 
then drains more quickly nearer the stream (X → 0) generating a curvilinear h(x) profile. However, each set of 
assumptions and approximations for solving h(x) may be more (or less) reasonable depending on the specific 

Figure 1.  A definition sketch of the cross section of a hillslope aquifer atop 
a sloping impermeable layer under a state of steady recharge. Note that the 
sketch is distorted for easier display (in reality Th << B).
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properties of the aquifer and recharge pathways under consideration (see Troch et al., 2013). We apply the simpli-
fying assumption that the hydraulic gradient (dh/dx) at the outlet (x = 0) may be roughly approximated as the 
average hydraulic gradient along the hillslope:

𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=

𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
≈

𝑆𝑆
∕𝑓𝑓cos 𝑖𝑖 + (

𝐵𝐵
∕2) sin 𝑖𝑖

(
𝐵𝐵
∕2) cos 𝑖𝑖

� (7)

where dH is the hydraulic head due to saturated aquifer thickness, dz is elevation head relative to the underlying 
impermeable layer, and B/2 is the midpoint of the hillslope.

We take a similarly practical approach to approximating 𝐴𝐴 𝐴𝐴0 . 𝐴𝐴 𝐴𝐴0 increases linearly with N immediately following 
a pulse of recharge, such that initial conditions of a dry aquifer (S = 0) following a pulse of recharge (N) are 

𝐴𝐴 𝐴𝐴0 ≈ 𝑁𝑁 ≈ 𝐻𝐻𝐵𝐵 , after which the effect of N on 𝐴𝐴 𝐴𝐴0 decays exponentially in time. Therefore, at any time t:

�0 ≈
∑−∞

�=0

��

�
�−�� (8)

where Nt is total recharge during the previous time step t (i.e., t days ago) and v [-] is an empirically derived 
constant that takes a positive value <1. Because LSMs and rainfall-runoff models are solved sequentially, Equa-
tion 8 can be simplified for computational efficiency as:

𝐻𝐻0 =

𝑁𝑁0

𝑓𝑓
+𝐻𝐻0𝑡𝑡=−1

𝑣𝑣� (9)

where 𝐴𝐴 𝐴𝐴0𝑡𝑡=−1
 is equal to 𝐴𝐴 𝐴𝐴0 during the previous time step. To account for well-documented monthly- to season-

al-scale hysteresis in low flow recession signatures (Bart & Hope, 2014; Shaw & Riha, 2012), we selected a value 
of v such that N from more than a month previous (t < −31) has a negligible effect on H0 (v 31 < 0.01). Therefore, 
we set v = 0.86 for all watersheds. Because v cannot be calculated directly, we provide sensitivity analysis for this 
variable in Section 4.4.

However, H0 does not reach 0 during periods without recharge, but instead asymptotically approaches some mini-
mum value (Hmin). To approximate Hmin, we rely on estimates of aquifer storage during historically dry periods 
(Sdry) for all watersheds in the coterminous United States from Tashie et al. (2021). Because Sdry is an empirical 
estimation of the minimum total storage necessary to sustain stream low flows during historically dry periods, 
therefore Sdry/f represents the correlated minimum average aquifer thickness during historically dry periods. We 
estimate Hmin as some fraction of Sdry/f such that 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 =

𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑

𝑓𝑓
𝑑𝑑 , where d [-] is an empirical constant. While values 

of Sdry/f are available for the coterminous United States in Tashie et al. (2021), values of d are not. Therefore, we 
estimate d according to the following criteria: (a) in actual hillslopes, a reasonable absolute minimum thickness 
of the stream-aquifer interface during extraordinarily dry periods in headwaters is likely to be on the scale of (tens 
of) millimeters; (b) the median Sdry/f for the coterminous United States is about 2,000 mm (Tashie et al., 2021); 
and (c) therefore d = 0.001 provides a reasonable estimation on Hmin. Combining this estimate with Equation 9 
yields:

𝐻𝐻0 =

𝑁𝑁0

𝑓𝑓
+𝐻𝐻0𝑡𝑡=−1

𝑣𝑣 +
𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑

𝑓𝑓
𝑑𝑑� (10)

Solving Equation 5 with Equation 6, Equation 7, and Equation 10 gives

𝑄𝑄𝑠𝑠𝑠𝑠 =

(

10
(log10𝐾𝐾0

+(
𝑆𝑆
∕𝑓𝑓)𝑚𝑚)

)

(

𝑆𝑆
∕𝑓𝑓cos 𝑖𝑖 + (

𝐵𝐵
∕2) sin 𝑖𝑖

(
𝐵𝐵
∕2) cos 𝑖𝑖

)(

𝑁𝑁0

𝑓𝑓
+𝐻𝐻0𝑡𝑡=−1

𝑣𝑣 +
𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑

𝑓𝑓
𝑑𝑑

)

𝐿𝐿� (11)

This computationally efficient model structure contains seven parameters that are watershed-scale empirical 
values (K0, m, Sdry, B, f, L, and i), two parameters that are universal estimates (d and v), one variable, that is, 
supplied by the overlying LSM or rainfall-runoff model (𝐴𝐴 𝐴𝐴0 ), and two variables that are solved iteratively by the 
GrUB low flow module (S and 𝐴𝐴 𝐴𝐴0𝑡𝑡=−1

 ). As noted above, we provide sensitivity analysis for v and d in Section 4.4 
because their values are neither analytically derived nor empirically estimated.
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4.  Model Testing
4.1.  Description of HBV

An initial assessment of the potential uncertainties and biases of the GrUB module necessitates analysis of a 
variety of flow conditions (i.e., long time periods) across a variety of physioclimates (i.e., a large number of 
basins). We chose to incorporate GrUB within the HBV model (Bergstrom, 1976, Bergström & Lindström, 2015) 
because of its modular structure that is parsimonious yet adaptable to a wide range of physical and climatic 
settings (Bergstrom,  1992). Specifically, we adapted HBV.IANIGLA (Toum,  2021) which interfaces with R 
software (“R Core Team,” 2019). Apart from its appeal as being computationally simple and broadly applicable, 
we chose to implement HBV.IANIGLA because the subroutines it uses to generate streamflow are conceptually 
similar to those used in Noah-MP and other common LSMs (Figure 2). Here, we give a brief outline of HBV 
model structure, though for a detailed description we direct readers to Bergström (1976, 1992) and Bergström 
and Lindström (2015).

HBV operates as a sequence of subroutines with parameters within each subroutine requiring calibration 
(Sælthun, 1996; Figure 2). HBV.IANIGLA requires two time series of climate data (mean temperature [Tmean] and 
precipitation [PPT]) to drive the model, and a single time series (generally streamflow (Q)) for calibration. The 
first routine (“Precipitation-Snow Routine”) calculates rainfall, snowfall, snowmelt, and potential evapotranspira-

tion (PET) from Tmean and PPT. The second routine (“Soil Moisture Routine”) 
calculates actual evapotranspiration (AET) and infiltration according to 
inputs from the first routine. The third and final routine (“Runoff Response 
Routine”) calculates direct runoff (Qdr), interflow (Qif), and baseflow (Qbf) 
according to inputs from the first two routines. The three runoff components 
are each independently calculated according to linear discharge from each of 
three conceptual buckets, with total streamflow (Qchannel) calculated as their 
sum. The parameters requiring calibration for each subroutine are listed in 
Table 2.

A benefit of the minimal data requirements of HBV is that a large number 
of watersheds are available for model calibration and assessment. We chose 
to use data from the Model Parameter Estimation Experiment (MOPEX) 
data set (Schaake et  al.,  2006) due to their strict data standards. Of the 
438 MOPEX basins for which hydrometeorological data are available, we 
selected 84 based on: (a) being designated as minimally impacted by human 
interference in the GAGES-II dataset (Falcone et al., 2010) and (b) having a 
minimum of 20 yr of data without data quality flags. These watersheds are 
illustrated in Figure 3.

Figure 2.  Conceptual model of HBV (left) and of HBV with GrUB replacing the groundwater module (right). GrUB stores and fluxes are highlighed in green.

Figure 3.  Map of MOPEX watersheds used in this study. Watersheds are 
highlighted according to their baseflow index (BFI [-]) as calculated using an 
automated hydrograph separation program (Wahl & Wahl, 1995) and reported 
by Wolock (2003).
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For each watershed, we calibrated the 14 parameters from Table  1 using the R-software package hydroGOF 
(Zambrano-Bigiarini, 2020). First, we generated a uniform distribution for each variable, with each distribution 
being constrained to a realistic value per HBV model description (see Table 2). For calibration, we applied a 
Monte-Carlo approach, generating 10,000 random samples from each distribution. We removed the first 3 yr 
of data from each watershed before calculating the Kling-Gupta efficiency (KGE; Gupta et al., 2009) scores to 
allow the groundwater stores to equilibrate. Model parameterization was chosen based optimal KGE calibration; 
because model performance was not assessed with KGE but instead with low flow metrics (see below) no data 
were reserved for validation using KGE.

4.2.  Implementing GrUB in HBV

We implemented the GrUB module in HBV directly, by replacing the lower bucket (SLZ, see Table 1) and the 
lower bucket storage constant (K2) with Equation 11 (Figure 2). Specifically:

1.	 �N0 from Equation 11 was calculated according to the recharge term (Perc) from the intermediate bucket (SUZ) 
to the lower storage bucket (SLZ) in HBV.IANIGLA.

2.	 �Qsb from Equation 11 replaced Qbf in HBV.IANIGLA.
3.	 �S from Equation 11 replaced SLZ in HBV.IANIGLA and was calculated as S = St−1 + N0 − Qsb

While the groundwater module native to HBV was fully calibrated for each watershed, the GrUB module was 
never calibrated in any watershed. When incorporating GrUB into HBV, we first calibrated HBV using all 14 
parameters from Table 1, then replaced the HBV groundwater module with GrUB. In subsequent sections, we 
refer to this implementation of the GrUB module within the HBV model simply as “GrUB” for convenience 
(Figure 4).

4.3.  Model Evaluation

Broadly, we evaluated the performance of HBV and GrUB in two ways: (a) according to their ability to repre-
sent streamflow during the entire period of record (i.e., “general model performance”); and (b) according to 
their ability to accurately represent streamflow during dry periods (i.e., “low flow performance”). We identified 

Parameter 
or 
Variable Description Derivation

N0 Depth of recharge at the current time step Input from overlying model

Kdry, Kwet Effective saturated hydraulic conductivity during historically dry and wet periods Tashie et al. (2021)

KS, K0 Effective saturated hydraulic conductivity at a particular value of storage (S), with K0 being K at S = 0 Calculated using Tashie et al. (2021)

m Recession constant (slope) relating S to log10(KS) Calculated using Tashie et al. (2021)

Sdry, Swet Effective drainable storage during historically dry and wet periods Tashie et al. (2021)

S Storage per unit area in the hillslope aquifer Varies with model

f Drainable porosity [-] Set to 0.1

i Slope of the impermeable layer underlying a hillslope aquifer (approximated as topographic slope) USGS [2004]

L Length of the stream network USGS [2004]

B Breadth of hillslope aquifer; note this term is often identified by the letter “L” (or “length”) in hillslope hydraulics 
equations

USGS [2004]

H0 Saturated aquifer thickness at the stream-hillslope interface Varies with model

d Ratio for approximating the minimum H0 in the absence of recharge Set to 0.001

v Parameter for approximating the effects of antecedent recharge on H0 Set to 0.95

Table 1 
List of Parameters and Variables Used in GrUB
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Parameter name Parameter description Routine Minimum value Maximum value Median calibrated value

SFCF Snowfall correction factor [-] Precipitation-snow routine 0.2 3 0.98

TR Solid-liquid PPT threshold temperature [°C] Precipitation-snow routine −6 6 −2.4

TT Melt temperature [°C] Precipitation-snow routine −6 6 0.76

FM Snowmelt factor [mm/°C] Precipitation-snow routine 0.2 8 1.6

FI Icemelt factor [mm/°C] Precipitation-snow routine 0.2 10 1.3

FIC Debris-covered icemelt factor [mm/°C] Precipitation-snow routine 2 10 6.0

FC Soil field capacity [mm] Soil moisture routine 25 1200 140

LP AET correction factor [-] Soil moisture routine 0.2 1 0.55

Beta Soil storage-runoff exponential [-] Soil moisture routine 1 3 2.2

K0 Top bucket (STZ) storage constant [t −1] Runoff response routine 0.05 1 0.46

K1 Intermediate bucket (SUZ) storage constant [t −1] Runoff response routine 0.005 0.5 0.22

K2 Lower bucket (SLZ) storage constant [t −1] Runoff response routine 0.0001 0.1 0.021

UZL Max flux rate between STZ and SUZ [mm/day] Runoff response routine 0.2 40 12

Perc max flux rate between SUZ and SLZ [LT −1] Runoff response routine 0.1 20 0.29

Table 2 
Parameters Used to Calibrate HBV

Figure 4.  Example of model results for a single water year in two watershed: (1) USGS 03070000 Cheat River at Rowlesburg, WV; (2) USGS 04221000 Genesee River 
at Wellsville, NY. Gaged discharge is illustrated in black, HBV results in red, and GrUB in blue. Plots on the right are in log space to highlight low flows.
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periods of “low flow” according to two different methods. First, we applied the Tennant method (Tennant, 1976), 
which is the most widely used method for defining minimum environmental instream flow in the United States 
(Jowett, 1997). Minimum environmental instream flows are calculated as 30% of the mean annual flow for the 
period of record. Second, we applied a quantile threshold approach (Praskievicz et al., 2018). Historical Q was 
ranked from largest to smallest, and streamflow records were selected based on an exceedance threshold of 96% 
(Q96), which is often also referred to as the lower fourth percentile of flow. We also calculated the time required to 
run GrUB in each watershed using the base R function “system.time()” with the average user time being 0.065 s/
yr per watershed.

To assess general model performance, we relied of four common metrics. The Nash-Sutcliffe model efficiency 
coefficient (NSE; Nash & Sutcliffe, 1970), which is traditionally the most common metric for evaluating hydro-
logic model performance. NSE varies from negative infinity to 1, with one indicating perfect correlation and 0 
representing the use of mean streamflow as the benchmark predictor. We also used the Kling-Gupta efficiency 
coefficient (KGE; noted above), which is becoming increasingly popular as a more balanced measure than NSE 
(Knoben et al., 2019). We also report mean absolute error (MAE) and absolute bias (Bias) both for general model 
performance and for low flow performance.

To assess whether the error metric distributions generated by HBV and GrUB were significantly different 
(p < 0.1) from one another, we relied on the non-parametric Wilcoxon signed-rank test (Wilcoxon, 1945). In the 
supplemental tables (Tables S1, S2, S3, S4, S5, and S6), we also report significance values from the two-sample 
Kolmogorov-Smirnov (KS) test (Smirnov, 1948). However, in our primary analysis (i.e., main text and figures) 
we rely on the Wilcoxon test as opposed to the KS test, as the former prioritizes (possible) differences in the 
median values of the distributions while the latter prioritizes differences in the shapes of the distributions.

4.4.  Sensitivity to Rate of Recharge

As our primary goal is to develop a groundwater module that is generally adaptable to a variety of LSMs and rain-
fall-runoff models without the need for fine tuning or calibration, it is essential that we “stress test” our module 
to uncertainty in the structure of the overlying hydrologic model. Because recharge (N) is the only component of 
the overlying hydrologic model that interacts directly with GrUB, we chose to focus on components of the HBV 
model structure that constrain rates and magnitude of N. Specifically, we recalculated the rate at which infiltrated 
water percolates through the subsurface according to two end-member scenarios:

1.	 �Slow Recharge: UZL and Perc (see Table 2) set to maximum rates of 0.1 mm/day.
2.	 �Fast Recharge: UZL and Perc set to minimum rates of 1,000 mm/day.

Recall (Table 2 and Figure 2) that UZL constrains the maximum rate of movement from soil storage to the upper 
storage zone (SUZ) and Perc similarly constrains the maximum rate of movement from the SUZ to the lower 
storage zone (SLZ). Therefore, in the Slow Recharge scenario N is constrained to a small, nearly constant rate 
of 0.1 mm/day at maximum. Meanwhile, the Fast Recharge scenario effectively represents all water reaching the 
water table immediately following percolation below the shallow soils store. For all three models, we altered the 
values of UZL and Perc but otherwise kept all parameter values the same (i.e., the values listed in Table 2).

5.  Model Results
5.1.  Model Performance

For the entire simulation period, HBV generated general evaluation results that were quite good (KGE: 
median  =  0.74; Figure  5). Average across all watersheds, absolute bias (Bias) was extremely low (Bias: 
median = 0.002 mm/day, mean = −0.008 mm/day) indicating high accuracy in the overall water balance. MAE 
was below 1 mm/day in most watersheds, with a median value of 0.61 mm/day. Because the models were opti-
mized on KGE, NSE evaluation results (which place a relatively higher priority on representing periods of high 
flow) were somewhat lower though still in a generally acceptable range (NSE: median = 0.53).
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Figure 5.  Violin plots of model evaluation results. Black dots represent mean values and black bars represent one standard deviation around the mean. Blue 
illustrates results from GrUB and red from HBV with the native calibrated groundwater module. Model performance results are (clockwise from top left) the Kling-
Gupta efficiency (KGE), Nash-Sutcliffe efficiency (NSE), absolute bias (Bias), and mean absolute error (MAE). Note. That no GrUB error metric distributions are 
significantly (p < 0.1) different from those of the basic HBV model.
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For the entire simulation period, the uncalibrated GrUB module generated nearly identical error metric distribu-
tions to the calibrated HBV model, with no distribution generated by GrUB being significantly (p < 0.1) different 
from those generated by HBV (Figure 5; Table S1).

During periods of low flow, HBV generated MAE that were usually below 0.2 mm/day (Q96 MAE: median = 0.11; 
Tennant MAE: median = 0.18; Figure 6). However, HBV low flow estimates exhibited a consistently positive 
Bias for nearly all watersheds (Q96 Bias: median = 0.07; Tennant Bias: median = 0.10).

During periods of low flow, GrUB generated marginally lower MAE during extremely dry periods (Q96 MAE: 
median = 0.09) although Tennant low flow MAEs were marginally higher (Tennant MAE: median = 0.19) and 
none of these differences was statistically significant (p > 0.1). However, according to both methods of low flow 
delineation, Bias was significantly improved (p < 0.1). Typical Bias of Q96 dropped to 0.02, and for the Tennant 
methods Bias dropped to 0.06. That is, the uncalibrated GrUB module generates low flow predictions that are 
similarly precise as and significantly more accurate than those produced by the fully calibrated HBV model.

5.2.  Alternative Scenario: Slow Recharge

For the entire period of record, HBV generated lower KGE and higher error metrics under the Slow Recharge 
scenario (Figure 7) than it did under the optimized scenario (Figure 5). Median KGE dropped to 0.63, MAE 
jumped to 0.97 mm/day, and NSE dropped to 0.25, while Bias remained about the same at 0.003. This indicates 
that artificially slowing recharge had a minimal impact on the overall water balance but caused a major decline in 
the ability of HBV to predict the timing of streamflow, as should be expected.

The overall effects were nearly identical for GrUB (Figure 7), with no error metric distribution generated by 
GrUB being significantly different than that generated by HBV.

For low flows, the effects on HBV were mixed. Somewhat surprisingly, Q96 MAE improved marginally 
(median = 0.09) while median Bias dropped by two-thirds to 0.02 (Figure 8). Meanwhile, Tennant median MAE 
worsened to 0.22 while Bias again dropped (median = 0.06). Recall that the rates of recharge in this scenario 
are artificially and unrealistically low. This indicates that there may be an inherent trade-off in HBV in terms of 
making accurate predictions of the timing of high flows versus low flows, with the chosen calibration routine 
being geared toward better representation of the former.

GrUB predictions of low flows changed very little under conditions of artificially slow recharge (Figure 8). Q96 
median MAE stayed about the same (0.09) and Tennant median MAE worsened slightly to 0.21, while Bias also 
stayed about the same (Q96 Bias: 0.001; Tennant Bias: 0.05). Under this scenario, Bias of GrUB predictions of 
Q96 low flows (median = 0.0001) remained significantly better than that of HBV. For all other error metrics, the 
distributions of GrUB were not statistically different from those of HBV.

5.3.  Alternative Scenario: Fast Recharge

For the entire period of record, HBV generated worse KGE, NSE, MAE, and Bias under the Fast Recharge 
scenario (Figure 9) than it did under the optimized scenario (Figure 5). In particular, the declines in values of 
KGE and NSE were extreme (KGE: median = 0.08; NSE: median = 0.10). Median MAE rose to 0.85 mm/day 
and median Bias quadrupled to 0.01 mm/day.

While error metric distributions also worsened for GrUB, the changes were generally less extreme. Median 
Bias went slightly negative to −0.0006 mm/day, while MAE rose to 0.75 mm/day. Median NSE values dropped 
precipitously to 0.11, but median KGE remained at a somewhat healthier value of 0.26. Under this scenario, KGE 
values for GrUB were significantly better than those generated by HBV (Figure 9).

For low flows, all HBV error metrics were two to five times worse under the Fast Recharge scenario (Figure 10) 
than they were under the optimized scenario (Figure 6). For both Q96 and Tennant, median MAE more than 
doubled (Q96: 0.28; Tennant: 0.44) while Bias quadrupled (Q96: 0.26; TNT: 0.42).
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Figure 6.  Violin plots of model predictions of low flows defined as 96% exceedance (Q96) flows (top row) and according 
to the Tennant method (bottom row). Blue illustrates results from GrUB and red from HBV with the native calibrated 
groundwater module. Model performance results are mean absolute error (MAE—left) and absolute bias (Bias—right). GrUB 
error metric distributions that are significantly (p < 0.1) different from those of the basic HBV model are highlighted in cyan.
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Figure 7.  Violin plots of model performance under the alternative scenario of Slow Recharge. Black dots represent mean values and black bars represent one standard 
deviation around the mean. Blue illustrates results from GrUB and red from HBV with the native calibrated groundwater module. Model performance results are 
(clockwise from top left) the Kling-Gupta efficiency (KGE), Nash-Sutcliffe efficiency (NSE), absolute bias (Bias), and mean absolute error (MAE). Note. That no 
GrUB error metric distributions are significantly (p < 0.1) different from those of the basic HBV model.
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Figure 8.  Violin plots of model predictions of low flows under the alternative scenario of Slow Recharge. Low flows are defined as 96% exceedance flows (Q96—top 
row) and according to the Tennant method (bottom row). Blue illustrates results from GrUB and red from HBV with the native calibrated groundwater module. Model 
performance results are mean absolute error (MAE—left) and absolute bias (Bias—right). GrUB error metric distributions that are significantly (p < 0.1) different from 
those of the basic HBV model are highlighted in cyan.
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Figure 9.  Violin plots of model performance under the alternative scenario of Fast Recharge. Black dots represent mean values and black bars represent one standard 
deviation around the mean. Blue illustrates results from GrUB and red from HBV with the native calibrated groundwater module. Model performance results are 
(clockwise from top left) the Kling-Gupta efficiency (KGE), Nash-Sutcliffe efficiency (NSE), absolute bias (Bias), and mean absolute error (MAE). GrUB error metric 
distributions that are significantly (p < 0.1) different from those of the basic HBV model are highlighted in cyan.
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Figure 10.  Violin plots of model predictions of low flows under the alternative scenario of Fast Recharge. Low flows are defined as 96% exceedance (Q96) flows (top 
row) and according to the Tennant method (bottom row). Blue illustrates results from GrUB and red from HBV with the native calibrated groundwater module. Model 
performance results are mean absolute error (MAE—left) and absolute bias (Bias—right). GrUB error metric distributions that are significantly (p < 0.1) different from 
those of the basic HBV model are highlighted in red.



Water Resources Research

TASHIE ET AL.

10.1029/2021WR030800

17 of 24

GrUB predictions of low flows also worsened, but to a much lesser degree. For Q96 and Tennant, median MAE 
only increased by 15%–35% (Q96: 0.12; Tennant: 0.22) while median Bias doubled (Q96: 0.05; Tennant: 0.15). 
For all low flow metrics, GrUB error metric distributions were significantly (p < 0.1) better than those produced 
by HBV (Figure 10).

5.4.  Sensitivity to Model Parameterization

GrUB relies on two parameters (v and d) that are not derived from empirical data, but instead estimated as univer-
sal constants. We tested sensitivity to these parameters by re-running GrUB for all watersheds with a wide range 
of parameter values. The range of parameter values was chosen to extend to (or beyond) values that are physically 
realistic.

For v, which constrains the length of time that recharge (N) has a non-negligible effect on H0 (v −t > 0.01), we 
chose values of 0.52, 0.86, 0.95, 0.963, and 0.9875. These represent time periods of 1 week, 1 month, 1 season, 
2 seasons, and 1 yr. For d, which represents the absolute minimum fraction of the hillslope aquifer thickness 
(Th) that remains activated at the stream-aquifer interface (Ho) during long periods without any recharge, we 
selected values 0.02, 0.005, 0.001, 0.0005, and 0.0001. Because Sdry/f represents the maximum value that Hmax 
can take during dry periods, and median Sdry/f for the coterminous United States is estimated at about 2 m (Tashie 
et al., 2021), a value of d = 0.02 represents a typical Hminimum of 40 mm, and a value of d = 0.0001 represents a 
typical Hminimum of 0.2 mm.

Parameter values did have noticeable effects on the hydrographs of individual watersheds, though these differ-
ences did not express themselves as significant changes in the overall performance of GrUB across all watersheds 
(Figure 11). We assessed the significance (p < 0.1) of their effects on KGE (for the entire period of record) and 
MAE (during periods of low flow) using the Wilcoxon rank sum test (Wilcoxon, 1945) and the two-sample 
Kolmogorov-Smirnov test (Smirnov, 1948). None were significant, with the lowest p-values (p = 0.45) register-
ing for changes in the variable v.

We also ran a limited test to assess the capacity of each of these parameters to be optimized via calibration. 
For each of the five values of v and d, we identified the best (and worst) parameter value for each watershed, as 
illustrated in Figures 11 and 12. Parameter value choice did not significantly affect the error metric distributions 
for KGE for either v or d. However, “calibration” of v does result in significantly improved predictions of low 
flow MAE (p < 0.001). Interestingly, optimal values of d are at the end member range of possible values (0.02 or 
0.0001) with no values in the middle range (0.005, 0.001, and 0.0005) being the optimal choice for any watershed. 
Optimal parameter values also show distinct regional clustering (Figure 12), with lower values of both v and d 
being optimal in the southern Appalachian Mountains and in portions of the Western United States, and higher 
values of each being optimal in most other regions.

6.  Model Performance
We assess the overall performance of the GrUB module not in terms of its absolute performance in maximizing 
the objective function (i.e., KGE) as this feat is largely achieved by the overlying hydrologic model (i.e., HBV). 
Instead, we assess its capacity to conform to the four key development objectives (a–d) while achieving the three 
key performance metrics (i–iii) outlined in the introduction. The four key development objectives that guided the 
development of the GrUB module are as follows:

1.	 �No calibration required: The wholly uncalibrated GrUB module is fully compatible with the otherwise cali-
brated HBV model.

2.	 �Simple data requirements: Parameterization of GrUB only requires data from several freely available conti-
nental- and global-scale datasets and requires minimal processing on the part of the model user. Unfortunately, 
three of the required parameters (K0, m, and Smax/min) are, to our knowledge, currently only available for the 
coterminous United States. Until these data are developed globally, the practical application of GrUB may be 
limited to this region.

3.	 �Modularity: GrUB requires input from only a single, common flux term from the driving hydrologic model 
(i.e., deep recharge) and otherwise operates independently from the rest of the model structure.
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4.	 �Computational simplicity: Though GrUB (Equation 11) is more complex than the simple storage-discharge 
used in HBV, this added complexity is negligible in terms of the added computation time.

GrUB also largely achieves the three performance metric objectives, with some minor exceptions as outlined 
below. When comparing the performance of the fully calibrated HBV groundwater module with that of the 
wholly uncalibrated GrUB module:

1.	 �Performance metrics for the entire period of record: overall model performance (i.e., high flows) is not signif-
icantly affected by incorporating the uncalibrated GrUB module into the calibrated HBV model.

Figure 11.  Boxplots of GrUB sensitivity to parameter selection. The left column illustrates KGE for the entire period of record. The right column illustrates mean 
absolute error (MAE) during low flows as defined by the Q96 method. The top row is for different values of “d” and the bottom row for different values of “v.” The 
parameterization used in the primary analysis is shown in blue (in the third position), with each triangle representing a single value from a single watershed. Alternative 
parameter values are illustrated in shades of purple (in the first, second, fourth, and fifth positions). Optimal or “best” parameter values are aggregated then illustrated 
in green (sixth position) and “worst” parameter values are aggregated then illustrated in red (seventh position). Error metric distributions that are significantly different 
(p < 0.1) from those used in the primary analysis are highlighted in red.
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2.	 �Performance metrics for periods of low flows: the uncalibrated GrUB module generates low flow error metrics 
that tend to be the same as or better than those generated by the calibrated HBV module.

3.	 �Sensitivity to overlying model inputs: GrUB is more robust to changes in the overlying hydrologic model 
parameterization than is the standard HBV storage-discharge module.

Figure 12.  Optimal values of each parameter (“d” on top and “v” on bottom) for each watershed. Note. That several parameter values are not the optimal (i.e., lowest 
MAE during low flows as defined by Q96) for any watershed.
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For the potential incorporation of GrUB into LSMs, these results are generally promising, though with some 
important caveats (see Section 6). That the wholly uncalibrated GrUB predicts low flows as well as (or better 
than) a simple calibrated module may prove beneficial to LSMs, which are broadly seen as describing low flows 
poorly without post hoc calibration (Fan et al., 2019; Holtzman et al., 2020). More important than the general 
performance, however, is the consistency with which a groundwater module predicts low flows when that module 
is forced by uncertain inputs from the overlying model structure. This “robustness” to changes in inputs from the 
overlying model is essential as different LSMs are structured and parameterized quite differently from each other 
(Clark et al., 2015).

GrUB is indeed extremely consistent in its prediction of low flows, as illustrated in the artificially extreme Slow 
Recharge and Fast Recharge scenarios (Sections 4.2 and 4.3). Recall that the Slow Recharge scenario represents 
percolation rates of about 0.1 mm/day, compared with up to 1,000 mm/day in the Fast Recharge scenario. Despite 
these potential rates of recharge spanning four orders of magnitude, error in GrUB predictions of extreme low 
flows did not vary significantly, with median MAE values differing by only about 20% across all three recharge 
scenarios (Figures 6, 8, and 10). Conversely, HBV error during low flows more varied by a factor of 2.8 across 
the same three scenarios. Even more importantly, GrUB Bias during low flows was both smaller on average and 
much more consistent across the three scenarios (GrUB median Q95 for original, Slow, and Fast Recharge: 0.02, 
0.0001, and 0.05; HBV median Q95 for original, Slow, and Fast Recharge: 0.07, 0.02, and 0.26).

Presented results have mixed implications for the potential incorporation of GrUB into rainfall-runoff models. 
While low flow Bias in GrUB was slightly lower than that in HBV, GrUB did not significantly improve any other 
error metric. Therefore, we do not expect GrUB to enhance the performance of other calibrated rainfall-runoff 
models where sufficient data for calibration are available. However, rainfall-runoff models are commonly applied 
in data sparse regions with “regionalization” approaches replacing parameter tuning via calibration (e.g., Swain 
& Patra, 2017). Regionalization approaches tend to be subject to high uncertainty, with no single regionalization 
method yet accepted as a standard (Oudin et al., 2008; Samuel et al., 2011). Because GrUB is robust to changes 
in the parameterization of the overlying hydrologic model, it may prove useful in constraining model characteri-
zation of low flows in basins where regionalization approaches are necessary.

7.  Limitations and Future Efforts
GrUB depends on three parameter values that are not currently available globally (K0, m, and Swet—see Table 1 for 
definitions). Though the methods to estimate these variables globally have been established (Tashie et al., 2021), 
until those data are available GrUB may not be applied outside the coterminous United States. GrUB also relies 
on L (stream network length), estimates of which are known to be extremely uncertain and which is known to vary 
with antecedent conditions by a factor of two or more (Godsey & Kirchner, 2014). While incorporating improved 
estimates of average L (Lin et al., 2021) may improve model performance, no large-scale data sets yet exist for 
describing its dynamic response to catchment conditions.

GrUB further relies on two parameters (v and d) that are treated as empirical constants. In many hydrologic 
models, these parameters might present an opportunity for fine tuning model behavior. However, fine-tuning 
and unique calibrations are antithetical to the purpose of GrUB. Even though GrUB is not overly sensitive to 
changes in the value of these parameters (Section 4.4), the fact that these parameters are estimated according 
to hydrologic “intuition” rather than directly calculated represents an unfortunate deviation from the otherwise 
empirically based structure of GrUB. Promisingly, the optimal value for each of these parameters tends to show 
distinct regional clustering (Figure 12) indicating possible underlying physical mechanisms that may be uncov-
ered in future research.

Though GrUB does incorporate seasonal-scale “watershed memory” by calculating H0 (saturated aquifer thick-
ness at the stream-hillslope interface) as a function of recent recharge (Equation 10), it does not account for 
potential multiannual long-term memory of climatic forcings that have been documented in many watersheds 
(for example, Fowler et al., 2020). Climate change is expected to induce long-term changes in watershed storage 
(and related ecohydrological responses) that are not directly accounted for in current generation LSMs (Argus 
et al., 2017; Enzminger et al., 2019). In its current form, GrUB does not make significant strides toward address-
ing this deficiency. Current generation LSMs are also known to underestimate ET during dry periods. A potential 
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explanation for this is that the representation of watersheds according to a representative soil column fails to 
account for the heterogeneity in soil moisture and depth to water table that is induced in actual watersheds by 
topography, geology, and soil structure. Though a hillslope hydraulics model of groundwater has been invoked as 
a potential tool for better capturing ET during dry periods (Clark et al., 2015; Fan et al., 2019), we do not attempt 
to model such behavior here.

8.  Conclusion
We develop a calibration-free, computationally simple module called GrUB to predict groundwater contribu-
tions to streamflow. GrUB may be readily incorporated into a variety of model structures that may be defined as 
lumped, conceptual rainfall-runoff models and distributed, physically based LSMs (Pechlivanidis et al., 2011). 
GrUB requires no calibration, but instead depends entirely on empirical data that is available for the entire 
coterminous United States and could potentially be derived globally. We assess the performance of GrUB in over 
80 United States watersheds by incorporating it into HBV, a popular rainfall-runoff model, and comparing over-
all performance metrics as well as error in predictions of low flows by the native (calibrated) HBV groundwater 
module and those by the (uncalibrated) GrUB module. GrUB generates error metrics that are equivalent to (or 
superior to) those generated by the calibrated HBV groundwater module. To ensure that predictions by GrUB are 
robust to changes in the structure and parameterization of the overlying hydrologic model, we run tests accord-
ing to two artificial scenarios: Slow Recharge at a rate of up to 0.1 mm/day, and Fast Recharge at a rate of up to 
1,000 mm/day. GrUB proves to be very robust to these extreme changes, with MAE of predictions of low flows 
only increasing by an average of 10% and 15%, respectively, in the Slow and Fast recharge scenarios. We suggest 
GrUB as a potential tool for improving predictions of low flows in LSMs that cannot be calibrated, as well as 
rainfall-runoff models when applied in locations where calibration data are sparse.
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