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Abstract: Wetlands’ morphometric or shape properties, such as their area and perimeter, impact a
multitude of ecosystem functions and services. However, current models used to quantify these
functions often only use area as an independent variable, as the static area and perimeter of different
wetlands have been found to be closely related. The study uses monthly inundation maps, derived
from remote sensing data, to assess the temporal covariation of geographically isolated wetlands’
perimeter and surface area. The results show that using static representations of wetlands to evaluate
temporal dynamic perimeter–area relationships can introduce significant discrepancies and that
these discrepancies can be reduced if evaluations using static data are performed separately for
each wetlandscape. This study concludes that models that use implicit area–perimeter relationships
based on static wetland representations, as is usually the case, should be applied with caution.
Additionally, it suggests that incorporating perimeter–area relationships from temporally dynamic
data can improve estimates of wetland functions.
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1. Introduction

Wetlands provide a wide range of invaluable ecosystem services, including contami-
nant buffering [1], flood protection [2,3], biodiversity support [4], and carbon sequestra-
tion [5]. Notably, several of these ecosystem services are strongly related to wetlands’
morphometric or shape attributes. For example, the removal rate of contaminants is related
to wetlands’ inundation area and perimeter [6–10], the volume of methane emissions is
affected by wetlands’ area [11–14], and the suitability of aquatic habitats for wetland bird
communities is influenced by wetlands’ area and perimeter-to-area ratio [15–18]. Unsur-
prisingly, the effect of a wetland’s perimeter and area on its functions is a topic of active
study. For example, several studies have focused on assessing habitat suitability [19–32]
and erosion and water quality [33–40] vis à vis wetlands’ shape attributes.

The effect of a wetland’s perimeter and area on its function is of particular significance
for geographically isolated wetlands (GIWs, hereafter). GIWs usually have a relatively small
inundation area but higher perimeter length per unit area, characteristics that make them
prominent control points for nutrient removal [41] and other biogeochemical processing
at the landscape scale [42–44]. Even though these wetlands play an important role in
modulating downstream water quality, they have been lost at higher rates [45], in part
because they are often accorded limited protections [46], although variably so in different
parts of the US [47].

Models quantifying wetland functions in relation to wetlands’ morphometric proper-
ties oftentimes only use area as an independent variable [7,44,48,49], in part because the
static area and perimeter of different wetlands can be closely related [50]. However, it

Water 2023, 15, 3445. https://doi.org/10.3390/w15193445 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15193445
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-7806-4803
https://orcid.org/0000-0002-5804-0510
https://doi.org/10.3390/w15193445
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15193445?type=check_update&version=1


Water 2023, 15, 3445 2 of 13

remains unclear if such a relation between static area and perimeter is valid temporally,
as the area and perimeter of wetlands vary with time. Addressing this knowledge gap is
essential, as a refined understanding of how wetland area and perimeter covary over time
could significantly enhance the precision of models used to quantify ecosystem services.
To this end, this study sheds light on the dynamic landscape patterns of GIWs. Specifically,
we examine the intricate interplay between perimeter and inundation area, employing
diverse shape metrics. The results of our investigation provide insights spanning wetlands
of varying sizes, diverse wetness conditions, and an array of wetland landscapes. The goal
is to unravel the nuanced relationships between wetland dimensions and their functions,
paving the way for more accurate predictive models, and optimal designs of constructed
and restored wetlands.

2. Materials and Methods
2.1. Metrics Used to Track the Perimeter–Area Covariation
2.1.1. Perimeter–Area (P:A) Ratio

The P:A ratio is a metric often used to capture a water body’s boundary configuration
vis à vis its size. Increasing deviation from a perfectly circular shape results in a higher P:A
ratio. In other words, an irregularly shaped wetland must be larger than a circular wetland
to have the same P:A ratio value. This metric has been used for quantifying the suitability
of water bodies to support biotic habitats [51,52] and to assess the potential of wetlands
for sequestering contaminants in the boundary ecotone per unit wetland size [42]. A high
P:A ratio is typically associated with wetlands that are hydrologically more dynamic and
ecologically diverse, such as marshes and swamps. In contrast, a low P:A ratio is usually
associated with wetlands that are more stable and less diverse, such as ponds and lakes.
The P:A ratio is calculated as:

P : A ratio =
P
A

(1)

where P is the wetland perimeter in m and A is the wetland area in m2. The metric has
the advantage of simple calculation, intuitive understanding, and representation. As the
metric has a dimension of 1/L where L is a length dimension, its magnitude decreases
monotonically with increasing area [42].

2.1.2. Shoreline Fractal Dimension

The shoreline fractal dimension (SFD) was originally developed to quantify the degree
of irregularity in oceanic coastlines [53–55]. Recently, SFD has also been used to characterize
wetlandscapes in US [56]. This metric is a measure of the complexity of the shoreline of a
wetland, and is calculated using the following equation:

P = kA
D
2 (2)

where k is a proportionality factor, and D is the SFD. As the geometric shape changes
from a circle to a line, D changes from D = 1 for a perfect circle with P = k

√
A to D = 2

for a line with P = kA. A higher SFD indicates a more complex wetland boundary with
enhanced twists and indentations. Given that complex shorelines are known to provide
more microhabitats, such as different water depths and water flow patterns, a higher SFD
is usually considered to favor higher diversity of plant and animal species found in the
wetland. Higher SFD for a wetland is also often interpreted to have larger reactive interface
length per unit area, thus highlighting the potential for contaminant buffering. For the
evaluation of D using static data of the area and perimeter, D is calculated as the slope of
the regression line between log P and log A of the wetlands under consideration. In order to
evaluate the temporal dynamics of D, it is computed using the equation D = 2·log P/log A,
assuming k as 1, for each time step. Notably, SFD, just like the P:A ratio, is also a scale-
dependent metric.
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2.1.3. Shoreline Irregularity

The shoreline irregularity (SI) is the ratio of the perimeter of wetland to the perimeter
of a circle of the same area [57,58]. The SI is calculated using the following equation:

SI =
P

2
√

πA
(3)

The smallest wetland area in remote sensing data corresponding to a wetland rep-
resented by a pixel has an SI of 1.13, while a perfect circle of the same area has an SI of
1. A crenulated wetland will have a larger SI. This metric has been used for evaluating
human impacts on wetlands [45] or explaining wetlands’ functions within their land-
scapes [16,23,26]. Notably, unlike the two other metrics considered above, i.e., P:A ratio
and SFD, SI is dimensionless in nature. However, it should be noted that a recent study
highlighted that despite the dimensionless nature of this metric, data resolution may still
alter its estimates [59].

2.2. Tracking the Dynamics of Perimeter-Area Covariation

To assess the dynamics of the shape attributes of GIWs, the three aforementioned
metrics were evaluated for each time instant that the data existed. Next, variations in these
metrics in relation to the wetness were assessed. Here, the wetness at a given time was
quantified according to the fractional area of the wetland with respect to its maximal extent
in the data period. The evaluation was performed separately for wetlands of different size
ranges. For all wetlands with their time-averaged area falling within a size range, metrics
were averaged for 20 wetness bins (i.e., 0–5%, 5–10%, etc.) to obtain the dynamical relation
of shape metric with wetness.

2.3. Assessing the Representativeness of Dynamic Perimeter-Area Covariation Based on Static
Wetland Data

To assess the applicability of perimeter–area relationships obtained from static wetland
data for defining temporal dynamics of shape metrics, the static shape-based relationship
between perimeter and area was first obtained. To this end, the area and perimeter for
all wetlands at their respective maximum extent were derived. The reason for using
the maximum extent was because it is consistent with the static relations derived using
NWI or similar databases in previous studies. Notably, wetlands in NWI are generally
developed based on vegetation, soil, and morphological descriptors that often respond to
the maximum inundated area extent [56,60]. This is further confirmed by the 1:1 relation
between NWI GIWs and the maximum area extent of remote sensing derived wetlands
(Figure S1). Using the area and perimeter of the wetlands’ maximum extent based on
remote sensing data, instead of evaluating them from static NWI data, also ensured that
the methodology can be applied globally.

Once the area and perimeter of each wetland at its maximum extent were established,
averages of the perimeter of all wetlands of identical sizes were obtained. The static area–
perimeter relationship was then derived as the linear interpolation between each wetland
pair ordered based on increasing area. To obtain the predicted perimeter, and consequently
the three aforementioned shape metrics, at a given time, the area for that given time was
substituted in the static relation. The differences between the predicted and observed
perimeter or shape metric magnitude were quantified as percentage discrepancies. These
differences were calculated as the ratio of abs(actual shape metric at any given time instant
− estimated shape metric using static data relation)/(estimated shape metric using static
data relation). Here, abs() indicates the absolute value. The evaluation was performed for
each time step. Next, the discrepancies were time averaged.
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2.4. Data

Spatio-temporal variations in wetland extent are usually mapped either by imple-
menting distributed or spatially explicit hydrologic models [61–64] or post-processing of
remote sensing data [65–68]. For mapping over larger areas (say, at continental scales)
at high spatial-resolution, remote sensing data have proven to be particularly effective.
For example, the Global Surface Water (GSW) [69] and Dynamic Surface Water Extent
(DSWE) [70,71] maps have been used to study inundation dynamics at as fine as 30 m
resolution [72–75] over large areas. Here, we used the monthly inundation maps of GIWs,
as derived from remotely sensed data in [75], for ten wetlandscapes in the continental US
(Figure 1). Using the GSW v1.0 inundation data from March 1985 to October 2015, the GIWs
were derived within 1000 km2 area rectangular regions within each wetlandscape. The
selected regions were identified to ensure the presence of a sufficient number of wetlands
in the study area and the frequent availability of remote sensing data. The method to derive
the GIWs in the remotely sensed GSW data followed a two-step process. First, GIWs were
identified in the National Wetlands Inventory (NWI) dataset following the rubric presented
in [76]. This encompassed several steps including the exclusion of riverine, marine, and
estuarine wetlands from ensuing analysis, as they are deemed to have surface connections
with water bodies. From among the remaining palustrine and lacustrine wetlands within
the study area, we identified the ones that have a higher likelihood of connections with
other water bodies during wet periods. To accomplish this, proximity filters were used.
Specifically, palustrine and lacustrine wetlands falling within buffer polygons with a radius
of 10 m around rivers or lakes with size exceeding 80,000 m2, or other water bodies such
as reservoirs with area larger than 15,000 m2, or water features such as bays/inlets, locks,
levees, etc., were excluded. Water polygons from the National Hydrography Dataset (NHD)
were used in the analysis. These steps yielded a map of GIWs in the NWI data. Notably,
several of these GIWS did not include any wet pixels based on the GSW data. The reason
for this discrepancy could be due to inherent uncertainties in these data, or mismatch
between the periods when these data were generated. Next, GIWs in the GSW data were
identified. To this end, the maximal extent of each wetland in the GSW data was mapped.
Then, wetlands that included at least an NWI GIW and also did not touch other non-GIW
water bodies in the NWI data were considered as GIWs. The ten wetlandscapes in which
GIWs were derived included the Basin wetlands (BAW), Cypress domes of the Southeast
(CYDS), Coastal plain wetlands (COPW), Delmarva bays (DELB), Nebraska Sandhills
(NSAN), Playa lakes of Texas and High Plains (PLTHP), Prairie potholes of the Upper
Midwest (PPUM), Vernal pools of California (VPOC), Vernal pools of Maine (VPOM), and
the Pocosins (POC). This study used the derived monthly inundation maps of GIWs to
quantify their dynamic shape attributes.
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Playa lakes of Texas and High Plains (PLTHP), Prairie potholes of the Upper Midwest (PPUM), Ver-
nal pools of California (VPOC), Vernal pools of Maine (VPOM), and the Pocosins (POC). 

3. Results 
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(Figure 2). While performing this fit, all selected GIWs across the ten wetlandscapes are 
used. The results show a clear dependence of the P:A ratio, SFD, and SI on wetland size 
(Figure 2). For larger GIWs, the P:A ratio and SFD generally decrease. This is unsurprising, 
as both metrics are non-dimensionless, with a length dimension in their denominator, and 
are expected to decrease with area. The decreasing trend in P:A highlights that with in-
crease in area, there is a proportional but sublinear increase in perimeter. Notably, the two 
metrics reduce at a faster rate when the wetlands are smaller in size. As SFD is obtained 
as the ratio of log-transformed perimeter and area, the decrease in it is much smaller than 
that in the P:A ratio. In contrast to the variations in P:A ratio and SFD, the only dimen-
sionless metric here, i.e., the SI, increases with size. This indicates that larger GIWs have 
more complex edges or non-rounded shape compared to the smaller GIWs per unit area. 
It should be acknowledged that for the smallest wetlands with area that encompass only 
a few pixels (with pixel size = 30  30 m), SI could be uncharacteristically small, as the 
perimeter representation will likely be much smoother than reality. The aforementioned 
trends in the considered metrics’ in relation to wetland size are similar regardless of the 
wetlandscape under consideration (Figure S2), even though the wetlandscapes belonged 
to diverse hydroclimatic settings [75]. 

Figure 1. Ten 1000 km2 rectangular wetlandscapes and identified NWI GIWs in them, as derived
in [75]. The ten wetlandscapes include the Basin wetlands (BAW), Cypress domes of the Southeast
(CYDS), Coastal plain wetlands (COPW), Delmarva bays (DELB), Nebraska Sandhills (NSAN), Playa
lakes of Texas and High Plains (PLTHP), Prairie potholes of the Upper Midwest (PPUM), Vernal
pools of California (VPOC), Vernal pools of Maine (VPOM), and the Pocosins (POC).

3. Results
3.1. Covariation of Perimeter and Area Based on Static Wetland Data

The covariation is evaluated using the best non-linear locally estimated scatterplot
smoothing (LOESS) fit line of perimeter–area covariation metrics vis à vis wetland size
(Figure 2). While performing this fit, all selected GIWs across the ten wetlandscapes are
used. The results show a clear dependence of the P:A ratio, SFD, and SI on wetland size
(Figure 2). For larger GIWs, the P:A ratio and SFD generally decrease. This is unsurprising,
as both metrics are non-dimensionless, with a length dimension in their denominator,
and are expected to decrease with area. The decreasing trend in P:A highlights that with
increase in area, there is a proportional but sublinear increase in perimeter. Notably, the two
metrics reduce at a faster rate when the wetlands are smaller in size. As SFD is obtained as
the ratio of log-transformed perimeter and area, the decrease in it is much smaller than that
in the P:A ratio. In contrast to the variations in P:A ratio and SFD, the only dimensionless
metric here, i.e., the SI, increases with size. This indicates that larger GIWs have more
complex edges or non-rounded shape compared to the smaller GIWs per unit area. It
should be acknowledged that for the smallest wetlands with area that encompass only
a few pixels (with pixel size = 30 × 30 m), SI could be uncharacteristically small, as the
perimeter representation will likely be much smoother than reality. The aforementioned
trends in the considered metrics’ in relation to wetland size are similar regardless of the
wetlandscape under consideration (Figure S2), even though the wetlandscapes belonged to
diverse hydroclimatic settings [75].
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point indicates the metric magnitude for a given GIW. The black line represents the best non-linear 
LOESS fit. 
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so does the shape metrics. For example, for wetlands with a maximum size within the 
range 5000 m2 to 20,000 m2, the P:A ratio reduces from 0.155 to 0.05 (a 68.1% reduction), 
while SFD reduces from 1.447 to 1.379 (a 4.7% reduction). The expressed trends are valid 
for all considered wetland size ranges. Interestingly, SI is observed to show a non-mono-
tonic variation, with SI first increasing with wetness and then decreasing subsequently. 
This trend is more apparent for bigger wetlands (size > 5000 m2). The non-monotonic re-
lation indicates that for larger wetlands, both during extremely dry and wet periods, the 
perimeter is less crenulated. Figure S3 confirms that these variations of metrics with wet-
ness are generally valid in most wetlandscapes. 

Figure 2. P:A ratio, shoreline fractal dimension (SFD), and shoreline irregularity (SI) vs. time-
averaged area for GIWs belonging to different size-groups. The three groups contain GIWs with
time-averaged size falling within the range of 0–5000 m2, 5000–20,000 m2, and 20,000 m2 and above.
Each point indicates the metric magnitude for a given GIW. The black line represents the best
non-linear LOESS fit.

3.2. Dynamic Covariation of Perimeter and Area

Variation of the P vs. A relationship with time is tracked by evaluating the three metrics
as a function of wetness. Covariation of inundation area and perimeter, as incorporated
in the three metrics, shows that shape metrics vary significantly with wetness (Figure 3).
In other words, as the inundation extent of wetlands or its wetness changes in time, so
does the shape metrics. For example, for wetlands with a maximum size within the range
5000 m2 to 20,000 m2, the P:A ratio reduces from 0.155 to 0.05 (a 68.1% reduction), while
SFD reduces from 1.447 to 1.379 (a 4.7% reduction). The expressed trends are valid for all
considered wetland size ranges. Interestingly, SI is observed to show a non-monotonic
variation, with SI first increasing with wetness and then decreasing subsequently. This
trend is more apparent for bigger wetlands (size > 5000 m2). The non-monotonic relation
indicates that for larger wetlands, both during extremely dry and wet periods, the perimeter
is less crenulated. Figure S3 confirms that these variations of metrics with wetness are
generally valid in most wetlandscapes.
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ratio and SI estimates are found to be as large 80 and 120%, respectively. Notably, the 
discrepancies are usually higher for larger wetlands, irrespective of the metric. 

Figure 3. P:A ratio, shoreline fractal dimension (SFD), and shoreline irregularity (SI) vs. wetness
fraction of GIWs belonging to different size-groups. The three groups contain GIWs with their
time-averaged size falling within the range of 0–5000 m2, 5000–20,000 m2, and 20,000 m2 and above.
Twenty equal-sized bins are used in the x-axis of each panel.

3.3. Discrepancies between Observed Dynamic P vs. A Variation and One Estimated from
Static Data

To assess the covariation of area and perimeter with time, as the wetness varies, similar
to that obtained using the static data, the discrepancies between estimated shape metrics
and the actual value at different times are evaluated (Figure 4). Discrepancies in SFD
are found to be modest, ranging from 0 to 10%. In contrast, the discrepancies in the P:A
ratio and SI estimates are found to be as large 80 and 120%, respectively. Notably, the
discrepancies are usually higher for larger wetlands, irrespective of the metric.
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Figure 4. Prediction discrepancies of P:A ratio, shoreline fractal dimension (SFD), and shoreline
Irregularity (SI) vs. area of each GIW belonging to different size-groups. The three groups contain
GIWs with their time-averaged size falling within the range of 0–5000 m2, 5000–20,000 m2, and
20,000 m2 and above. Each point indicates the time-averaged discrepancies for a GIW when the
dynamic metrics were predicted by the empirical relation obtained from static wetland descriptors
such as its maximum area and perimeter.

We further investigate if static relations that are developed specifically for individual
wetlandscapes can be used to reduce discrepancies in the prediction of temporally evolving
shape metrics. To this end, averaged prediction discrepancies are re-evaluated for each
wetlandscape separately by using corresponding relations derived based on static data
in those landscapes. Among the 87 cases (10 wetlandscapes * 3 wetland size groups − 3,
see Figure 5), 69 cases (79.31%) show that the errors in estimated shape metrics reduce
when static relations are developed using local data of the relevant wetlandscape. The
corresponding fractions for the P:A ratio, SFD, and SI are 82.76%, 79.31%, and 75.86% (24/29,
23/29, and 22/29), respectively. Smaller errors in estimated shape metrics when developed
using local data can be partially attributed to the similarity of the morphological and
bathymetric characteristics of wetlands within a wetlandscape, even when they vary in size.
In fact, if all wetlands in a wetlandscape exhibit an identical shape, the relationship between
perimeter and area across different wetlands, as determined from static data, will resemble
that derived from dynamic data. The largely uniform influence of hydrometeorological
factors on inundation dynamics across wetlands within a wetlandscape is expected to also
contribute to reduced errors in the estimation of shape metrics when obtained using static
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relations within a wetlandscape. On average, the impacts of reductions are the highest
for large wetlands (Table S1). Among the ten wetlandscapes, discrepancy reduction is the
highest (lowest) in Pocosins (Basin wetlands), with an average reduction of 36.28%, 26.07%,
and 27.3.7% (20.12%, −28.57%, and −15.97%) for the P:A ratio, SFD, and SI, respectively.
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edly when static relations were derived for each individual wetlandscape, the results un-
derscore the need to develop perimeter–area relationships that are wetlandscape-specific. 

Figure 5. Heatmap with prediction discrepancies of P:A ratio, shoreline fractal dimension (SFD), and
shoreline irregularity (SI) vs. area of GIWs belonging to different size-groups in each wetlandscape.
The prediction used the static shape relations vis à vis wetland size from all wetlandscapes (top row)
or the given wetlandscape (bottom row). The three size-groups contain GIWs with time-averaged
size in the range of 0–5000 m2, 5000–20,000 m2, and 20,000 m2 and above.

4. Discussion

This study quantifies three well-known shape metrics for GIWs, viz. P:A ratio, SFD,
and SI, and assesses their variations with wetland size. The results show that shape
metrics have strong dependence on wetland size and inundation status. While this is
unsurprising for shape metrics that are non-dimensionless, but even the SI metric, which
is dimensionless, exhibits the influence of inundation status, i.e., what fraction of the
wetland is inundated with respect to its maximal area, showing an increasing followed by
a subsequently decreasing trend with inundation fraction. The results indicate that larger
GIWs have more complex edges or non-rounded shapes compared to the smaller GIWs
per unit area. The information regarding the variation of these shape metrics with wetland
size can be used to design or restore wetlands with the goal to optimize the ecosystem
service yield.

Next, the study evaluated the extent to which the shape metrics vs. wetland size
relationship derived using static data, as has been achieved in the past, is valid for temporal
datasets of wetland inundation extent. Evaluations for three well-known shape metrics, viz.
P:A ratio, SFD, and SI, indicated that using relations derived from static data to estimate
shape metrics at varying inundation extents introduced large discrepancies (up to 80%, 10%,
and 120% for P:A ratio, SFD, and SI, respectively). Notably, these discrepancies are small
for smaller wetlands. Overall, the results highlight the need to develop and incorporate
temporally dynamic shape metrics or perimeter–area relationships to improve wetland
function modeling. This is further corroborated by a recent study [77] that highlighted that
the consideration of transient wetland inundation dynamics can increase nitrogen retention
estimates by up to 130%. Given that the prediction errors reduced markedly when static
relations were derived for each individual wetlandscape, the results underscore the need
to develop perimeter–area relationships that are wetlandscape-specific. It is important to
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note that the shape factors considered here do not capture all aspects of wetland functions.
Different wetland functions, such as recharge, nutrient cycling, habitat suitability, or carbon
sequestration, may be more or less sensitive to wetland area and perimeter dynamics, and
this relationship may change over time depending on changes in meteorological conditions
and wetland substrate properties. Hence, the extent to which the temporally dynamic
perimeter–area relationship may improve estimates of wetland functions are expected to
be dependent on the ecosystem function under consideration, the representativeness of the
shape metrics used to capture these functions, and site-specific properties. Despite this, the
findings of this study clearly emphasize the necessity of relinquishing the limitations of
static data analyses and embracing a more dynamic approach to shape metric assessment
in models used for quantification of wetland ecosystem services.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15193445/s1, Figure S1. Relation between the area of GIWs’
from NWIs and those derived from the remote sensing data; Figure S2. P:A ratio, Shoreline Fractal
Dimension (SFD), and Shoreline Irregularity (SI) vs. time-averaged area for GIWs belonging to
different size-groups for each wetlandscape. The three groups contain GIWs with time-averaged size
falling within the range 0–5000 m2, 5000–20,000 m2, and 20,000 m2–above. Each point indicates the
metric magnitude for a GIW evaluat-ed after obtaining the time-averaged value of the participating
variables; Figure S3. P:A ratio, SFD, and SI vs. wetness of dynamic area for GIWs belonging to
different size-groups for each wetlandscape. The three groups contain GIWs with their time-averaged
size falling within the range 0–5000 m2, 5000–20,000 m2, and 20,000 m2–above. 20 equal-sized bins
of wetness, represented as the fraction of area for the maximum, are used to get representa-tive
metrics for wetness (black line); Table S1. Averaged prediction errors of P:A ratio, SFD, and SI
for GIWs belonging to different size-groups in each wetlandscape. The prediction used the static
shape relations vis-à-vis wetland size from all wetlandscapes (top row) or the given wetlandscape
(bottom row). The three size-groups contain GIWs with time-averaged size in the range 0–5000 m2,
5000–20,000 m2, and 20,000 m2–above.
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