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Abstract: Reliable estimates of aquifer recharge have the potential to help develop sustainable groundwater management policies. Despite
its importance, quantifying this flux continues to be a challenge and remains one of the most uncertain components of the hydrological cycle.
Here, we obtain a spatially explicit estimate of recharge using a semi-distributed hydrologic model for a major river basin in the Southeastern
United States. A comparison of these process-based estimates with a data-driven recharge product (developed by USGS), which was obtained
using a set of empirical regression equations, shows good agreement at the basin scale, but significant discrepancies at finer spatial res-
olutions. Overall, the semi-distributed model shows a higher degree of spatial heterogeneity across the basin than the USGS study results,
which likely indicates that the empirical relationships modeled at the basin scale by the USGS empirical equations might not hold at smaller
spatial scales. However, more ground-truthing recharge datasets are necessary to properly evaluate subbasin-scale models and reduce the
uncertainty of estimates at these scales. DOI: 10.1061/JHYEFF.HEENG-5882. © 2023 American Society of Civil Engineers.

Practical Applications: Groundwater recharge information at local scales is essential for various tasks: It is critical in the assessment of
groundwater contamination from point sources, determining rates of change in response to pumping, quantifying local scale climate-induced
storage change effects, assessing climate impacts on land cover changes and water supply, to name a few (Scanlon and Cook 2002) (Reitz
et al. 2017). Because precipitation, pumping rates, land cover changes, and other important factors that affect groundwater recharge can vary
significantly at a local scale (on the order of 1 to 10 km2), having recharge estimates at a similarly fine scale will be useful for groundwater
managers to evaluate the effectiveness of various practices that impact different stakeholders within the basin, and use this information to
develop more effective water management plans.

Introduction

Groundwater depletion (larger withdrawals than natural recharge)
is a growing threat to groundwater management and water security.
Particularly in the Southeastern US, the Mississippi embayment
section of the Gulf Coastal Plain, groundwater depletion has oc-
curred at a rate of 1.2 km3=year between 1900 and 2008 (Konikow
2015). The consequences of this groundwater depletion have been
widely documented (Konikow 2015; Konikow and Kendy 2005;
Landes et al. 2014; Pranjal et al. 2021). Increasing water demand,
driven by agricultural development and population growth, and de-
creasing surface water availability due to droughts, are some of the
major causes that have led water users worldwide to turn to ground-
water to meet freshwater demands. However, this practice has im-
posed significant stress on various major groundwater aquifers

around the world (Famiglietti 2014). Accurate and timely informa-
tion, at various spatiotemporal scales, on the amount of water stored
in groundwater aquifers, is necessary to develop more sustainable
and flexible water management policies. A better understanding
of when and where recharge happens within watersheds allows water
managers to better orient resources and design tailored solutions
where needed. One of the 23 unsolved problems in hydrology iden-
tified by the hydrology community in 2018 related to time variability
and change is the question: “What are the impacts of land cover
change and soil disturbances on water and energy fluxes at the land
surface, and on the resulting groundwater recharge?” Blöschl et al.
(2019). One of the goals of this study is to address this question.

Reitz et al. (2017) employed a data-driven approach to estimate
annual values of recharge, runoff, and evapotranspiration (ET) [we
will refer to these data as United States Geological Survey (USGS)
datasets or USGS products] at an 800 m resolution for the period
2000–2013 for the continental United States (CONUS). As per our
knowledge, this is the only fine-scale recharge product available for
mapping recharge over the entire CONUS. Reitz et al. validated
their long-term recharge estimates (averaged over 14 years, from
2000 to 2013) using a relatively small number of point observations
reported by McMahon et al. (2011). The McMahon et al. study
compiled the apparent water age distribution in a few groundwater
aquifers by using various networks of wells located at 45 field sites
distributed over the entire CONUS. The groundwater recharge val-
ues were calculated based on age-depth distribution data. However,
validating a large-scale dataset with a small number of point esti-
mates is not adequate, because a sample of 45 sites in an area as big
as the United States is not representative. Furthermore, several
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states did not have a single measurement, and some states had lim-
ited information that is based on other secondary studies. For ex-
ample, there was just one recharge estimate for the entire state of
Alabama. This estimate was based on a groundwater quality study
completed by Robinson (2002) that reported samples collected in
1993 from a network of 12 wells located predominantly in
residential/commercial zones near Montgomery, Alabama. Based
on these data, McMahon et al. estimated the long-term recharge
for each well with values ranging from 26 to 540 mm=year with
a median value of 120 mm=year. The corresponding average esti-
mate predicted by the USGS empirical model for the Montgomery
region, is about 175 mm=year. The large difference in the two es-
timates is a concern; furthermore, the discrepancy in the estimation
time is another concern. Note that the McMahan et. al. values were
based on groundwater data collected in 1993, whereas the USGS
product was developed based on a water budget evaluated for the
period 2000 to 2013. Other than this rather weak validation exer-
cise, to the best of our knowledge there have not been any field
studies completed to validate the USGS annual recharge product.
More recently, a modeling study was completed by Li et al. (2021)
to compare the USGS long-term product against a set of land sur-
face model (LSM) simulation results. The results show that the
greatest discrepancies between the ensemble of LSMs and the
USGS long-term recharge product are in the southeastern and
northwestern portions of the CONUS.

Because a full validation is not possible due to the lack of direct
measurements, we hypothesize that a comparison with a process-
based model that explicitly resolves hydrological processes at a
scale similar to the USGS product would still provide insights into
the strengths and limitations of the data-driven approach of the
USGS product. Therefore, the objective of this study is to imple-
ment a process-based, semi-distributed hydrological model for a
major river basin in Alabama, the Black Warrior-Tombigbee Basin,
using the Soil and Water Assessment Tool (SWAT) (Arnold et al.
1998), and compare the model results with the recharge product
developed by the Reitz et al. USGS study.

Study Area

The basin region selected for this study drains at a USGS gauging
station located in Coffeeville, Alabama (station ID 02469761). The
drainage basin include Tombigbee River and the Black Warrior
River. The entire drainage area, referred to herein as the Basin,
includes the hydrologic unit level 6 (HUC-6) Black Warrior-
Tombigbee Basin, and extends to a portion of the HUC-6 Mobile
Bay-Tombigbee Basin (Fig. 1). The streamflow record available at
the Basin outlet is for January 2000 to December 2013 period, and
the USGS recharge product includes this period.

The Basin drains an area of approximately 48,300 km2, overly-
ing portions of Mississippi and Alabama. The Tombigbee River is a
tributary of the Mobile River, and it is approximately 320 km long.
The Tombigbee watershed is part of the coastal plain of Western
Alabama and Northeastern Mississippi, flowing generally south-
ward. The Tombigbee River merges with the Alabama River to
form the Mobile River that drains into Mobile Bay on the Gulf
of Mexico. The Tombigbee River became an important commercial
navigation route after the construction of the Tennessee-Tombigbee
Waterway, which consists of a series of dams and locks.

The Black Warrior River, approximately 286 km long, is a tribu-
tary of the Tombigbee River. Its upper drainage area is part of the
southern end of the Appalachian Mountains, while the downstream
portion drains forest land of the coastal plain regions. The main
branch of the Black Warrior River is impounded by a series of nar-
row reservoirs constructed for navigation, hydropower, and water

supply. According to the National Land Cover Database (NLCD),
the Basin is covered by various types of forests and pastures over
approximately 65% of the area; about 13% is woody wetland, 7% is
urban, 3% is agricultural land, and the remaining 12% is divided
among other land cover types (Dewitz 2016).

Methodology

We developed a semi-distributed hydrological model (referred to
herein as the SWAT model) using the Soil and Water Assessment
Tool (Neitsch et al. 2011; Preetha and Al-Hamdan 2020) to produce
independent estimates of groundwater recharge, and compared the
results with the USGS annual recharge product. The modeling steps
used are summarized in Fig. 2.

SWAT Model Details

SWAT is a semi-distributed hydrological model developed by the
USDA Agricultural Research Service to predict the impacts of land
management practices on water, sediment, and chemical yields
(Neitsch et al. 2011). It simulates spatial variability by discretizing
the watershed into subbasins, and these are further discretized into
hydrologic response units (HRUs). The HRUs are areas within a
subbasin with a unique combination of land use, soil type, and
slope. SWAT does not simulate the interactions between different
HRUs. The hydrological cycle is simulated by using two phases:
the land phase, and the routing phase. The land phase controls the
amount of water that reaches the main channel within each subba-
sin, and it is calculated at the HRU level. The routing phase is cal-
culated at a subbasin scale, and it defines the movement of water
through the channel network of the basin.

Fig. 1. Study area.
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The land phase is modeled using the following water balance
equation:

SWt ¼ SW0 þ
Xt

i¼1

ðR −Q − ET − P −QgwÞi ð1Þ

where SWt is the soil water content at time t; SW0 is the initial soil
water content; R is precipitation; Q is surface runoff; ET is evapo-
transpiration; P is percolation exiting the bottom layer of the soil
profile; and Qgw is return flow.

Surface runoff is estimated by two methods: the SCS curve
number method (Mishra et al. 2012), or the Green & Ampt infil-
tration method (Green and Ampt 1911). For this study, we used the
SCS curve number method.

SWAT employs three methods to estimate potential ET (PET),
Penman-Monteith (selected for this study), Priestley-Taylor, and
Hargreaves. Once PET is calculated, actual ET is estimated by first
evaporating water available in canopy storage, and then SWAT
calculates the maximum amount of transpiration along with the
maximum amount of sublimation/soil evaporation.

Percolation is calculated for each layer of the soil profile, and it
is determined by

Wly ¼ SWly;excess

�
1 − exp

� −Δt
TTperc

��
ð2Þ

SWly;excess ¼ SWly − FCly for SWlY > FCly; 0 otherwise

ð3Þ

whereWly;excess is the drainable volume of water in the soil layer at
a given time step; Δt is the length of the time step; TTperc is the
time for percolation; SWly is the soil water content of a given layer;
and FCly is the field capacity.

The baseflow (return flow) is determined by the water balance
for the shallow aquifer (SWAT models two aquifers for each sub-
basin, a shallow unconfined aquifer, and a deep aquifer):

aqsh;i ¼ aqsh;i−1 þ wrech;sh −Qgw − wrevap − wpump ð4Þ

where aqsh;i is the volume of water stored in the shallow aquifer on
Day i; aqsh;i−1 is the volume stored on the previous day; wrech;sh is
the amount of recharge entering the shallow aquifer on Day i; Qgw
is the return flow or baseflow into the main channel on Day i;
wrevap is the amount of water moving into the soil zone in response
to water deficiencies on Day i; and wpump is the amount of water
extracted by pumping on Day i.

Total recharge (for both aquifers) wrech is calculated by

wrech;i ¼
�
1 − exp

�
− 1

δgw

��
Pþ exp

�
− 1

δgw

�
wrech;i−1 ð5Þ

where wrech;i is the recharge entering aquifers on Day i; and δgw is
the drainage time of the overlying geologic formations. The parti-
tioning of total recharge into shallow and deep aquifer recharge is
controlled by the percolation coefficient βdeep:

wrech;sh ¼ wrechð1 − βdeepÞ ð6Þ

In this study, the total recharge computed using Eq. (5) at the
HRU scale will be used to compare with the USGS recharge
product.

Finally, the return flow or baseflow due to groundwater dis-
charging into the main channel is estimated as

Qgwi ¼ Qgwi−1 expð−αgwΔtÞ þ wrech;shð1 − expð−αgwΔtÞÞ ð7Þ
where αgw is the baseflow recession constant.

For further details, the reader should refer to the SWAT theoreti-
cal documentation report (Neitsch et al. 2011).

Model Setup

The model for the Basin was created using the automatic watershed
delineator available in the ArcGIS interface for SWAT; specifically
ArcSWAT version 2012.10.24 for ArcGIS 10.7. The final model
consists of 40 subbasins and 3,774 HRUs. Three locations along
the river network were identified for later use as calibration/
validation points, including the outlet of the Basin. These locations
coincide with the location of USGS Streamgauges. The details of
these gauges are discussed in the “Datasets Used” section.

As mentioned in the “SWAT Model Details” section, SWAT
allows one to choose between different methods for modeling
various hydrological processes. In this study, the SCS curve num-
ber method was selected for surface runoff modeling and the
Penman-Monteith method for modeling potential ET. The model
was set to run from January 1, 1997, to December 31, 2013, using
a daily time step, with a warm-up period of three years, generating
results from January 1, 2000, to December 31, 2013.

Sensitivity Analysis and Model Calibration

Total streamflow and baseflow were chosen as the calibration target
variables for the developed SWAT model using the Nash-Sutcliffe
Efficiency (NSE) coefficient (Nash and Sutcliffe 1970) as the

Fig. 2. Modeling methodology.
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objective function. Total stream flow is an important water balance
component of any hydrological system, and it is commonly used as
the target variable for calibrating the model (Joseph et al. 2021;
Preetha and Al-Hamdan 2019). Additionally, baseflow was se-
lected because it is closely related to the groundwater component
of the water balance.

Baseflow was estimated using PART, the same method used by
Reitz et al. (2017). PART is a USGS-developed software that uses a
hydrograph separation method to split streamflow into quick-flow
and baseflow components (Rutledge 1998). According to the PART
documentation, the baseflow estimates from this software, despite
being calculated at a daily time step, are valid only if the values are
aggregated at least at a quarterly time scale. Therefore, baseflow
values were calibrated using annual estimates for the period
2000–2013. For total streamflow (which was based on directly ob-
served data from USGS Streamgauges), a monthly time scale was
selected for calibration.

To identify the optimal set of parameters for performing the cal-
ibration step, we first quantified the sensitivity of several important
model parameters for predicting both streamflow and baseflow pat-
terns. The sensitivity analysis of model parameters and calibration
of the model was carried out in RStudio (Fig. 2), with the help of
the package SWATplusR (Schuerz 2021). This package allows the
user to execute, modify and read SWAT models within the R envi-
ronment, enabling the user to leverage other packages written in R
for further analysis. Additionally, SWATplusR performs multiple
runs in parallel, which optimizes the computational time. Because
the calibration targets involve two different temporal resolutions
(annual for baseflow and monthly for streamflow), the sensitivity
analysis and calibration steps had to be carried out independently
for each target variable. Then, based on the results of both calibra-
tions, a common set of sensitive parameters were adjusted through
a trial-and-error process to obtain adequate joint performance.

The sensitivity analysis was performed using the Fourier
Amplitude Sensitivity Test (FAST) (Cukier et al. 1973). This test
is a variance-based global sensitivity analysis method that uses a
periodic sampling procedure and a Fourier transform to decompose
the variance of a model into partial variances contributed by differ-
ent model parameters (Xu and Gertner 2011). The test indicates the
fraction of the objective function variance that can be attributed to
each parameter. FAST was implemented using the R package fast
(Reusser 2020). Musyoka et al. (2021) implemented this method to
perform a sensitivity analysis for SWAT model parameters.

We tested the sensitivity of the most common parameters used
for streamflow and baseflow calibration in SWAT models (Bailey
et al. 2016; Li et al. 2013; Musyoka et al. 2021; Preetha and
Al-Hamdan 2022) (and for posterior calibration). The parameters
considered are summarized in Table 1. The possible values selected
for each parameter include a range of likely values according to the
level of parameter uncertainty. For example, curve number values
were varied by�10%, while soil available water content was varied

by �50%, because we expected less uncertainty in the actual curve
number value for a certain type of land use than in soil available
water content.

To identify the parameter combination that produces the best
model performance, the most sensitive parameters were perturbed
in the model with a Latin hypercube sampler (LHS) (Loh 1996),
using the R package lhs. The range of possible values for each
parameter was selected according to the model performance shown
in the sensitivity analysis. After this step, the combination of
parameter values that produced the highest model performance
was selected.

Parameter changes were applied for the entire basin: Calibration
at the outlet of the basin (Station Coffeeville), and validation at the
other two stations (Geiger and Northport). Because performance
was adequate at these three stations, subbasin-wise calibration at
these points was not necessary. Arsenault et al. (2018) suggest that
is best to include all available years in the dataset for the calibration
process, instead of using a split-sample method. In our study,
the entire period of interest (2000–2013) was used for model
calibration.

Datasets Used

Different types of datasets were used to accomplish various model
development objectives. These include data for setting up the
hydrological model, model forcing (weather data), calibration tar-
gets, and ETand recharge for model comparisons. Further details of
these datasets are described in the following sections and are sum-
marized in Table 2.

SWAT Inputs

To build the hydrological model, SWAT needs a digital elevation
model (DEM), soil, and land use/land cover data. The DEM was
obtained from the USGS The National Map download service. The
1-arc-second DEM version was selected. ArcSWAT was used to
retrieve the STATSGO soil dataset from the US Department of
Agriculture. Finally, land cover-land use data was retrieved from
National Land Cover Database version 2016.

Hydrometeorological data from the National Centers for Envi-
ronmental Prediction (NCEP) Climate Forecast System Reanalysis
(CFSR) is available on the SWAT website. This dataset provides
daily precipitation, wind, relative humidity, and solar data in
SWAT 2012 file format from 1979 to 2014 (Preetha et al. 2021).
For this study, we downloaded data between January 1, 1997, and
December 31, 2013. Studies have found that using CFSR precipi-
tation and temperature estimates to force SWAT models produces
equal or better streamflow simulations than does using traditional
weather stations (Dile and Srinivasan 2014; Fuka et al. 2014).

Reitz et al. (2017) included groundwater-sourced irrigation to
estimate effective precipitation. They argue that most groundwater
irrigation comes from deep aquifers not affected streams and these

Table 1. Selected parameters for sensitivity analysis

Parameter SWAT parameter name Target (streamflow/baseflow) Adjustment range

Curve number for moisture condition II (unitless) CN2 S/B −10% to 10%
Soil available water content (unitless) SOL_AWC S/B −50% to 50%
Delay time for aquifer recharge (δgw) (days) GW_DELAY S/B −50% to 50%
Soil saturated hydraulic conductivity (mm/h) SOL_K S −50% to 50%
Channel Manning’s roughness coefficient (unitless) CH_N2 S −50% to 50%
Soil evaporation compensation factor (unitless) ESCO S/B 0.01–1.0
Baseflow recession constant (αgw) (unitless) ALPHA_BF S/B 0–1
Threshold water level for baseflow to occur (mm) GWQMIN S/B 1–50

© ASCE 04023019-4 J. Hydrol. Eng.
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volume would add to local water budgets. In our study area, agri-
cultural land accounts only 3% of the area. Moreover, groundwater
comes mainly from shallow aquifers. Therefore, irrigation water
was considered negligible.

Calibration Targets

Streamflow and baseflow data were selected as calibration targets.
Streamflow was obtained from USGS Streamgauges within the
Basin. Streamgauges with less than 5% of gaps between 2000 and
2013, and a drainage area greater than 10% of the Basin, were se-
lected; a total of three stations meet these criteria, including the
outlet of the Basin (see Table 3)

The locations of the USGS gauge station are shown in Fig. 1.
Because no direct measurements of baseflow are available,
a baseflow separation method was used to estimate it from daily
streamflow data, as described in the “Sensitivity Analysis and
Model Calibration” section.

USGS Annual Estimates of ET and Groundwater
Recharge

Reitz et al. (2017) provided estimates of annual quick-flow runoff,
ET, and groundwater recharge for CONUS (in this study we focus
on recharge and ET datasets); these datasets are available in the
USGS Science Base Catalog. As mentioned before, these estimates
were developed by the authors by fitting empirical regression equa-
tions to the long-term average (14 years), basin-scale quick-flow
runoff, and ET data, and then applied directly to annual and pixel
scale (800 m resolution) data to predict quick-flow runoff and ET
for the CONUS. Annual effective recharge estimates were then ob-
tained by closing the water budget to sum to the total influx from
precipitation using the equation

R ¼ P −Q − ET −ΔS ð8Þ
where R (m=year) is effective recharge or baseflow; P (m=year) is
precipitation; Q (m=year) is quick-flow runoff; andΔS (m=year) is
the change in subsurface water storage. The authors assumed that
the change in sub-surface storage is negligible compared to the vol-
umes of the other components over long time scales. To account
for the effective recharge that is intercepted by riparian vegetation

near streams, the authors added 5% of ET uniformly to the effective
recharge (this dataset is called Total Recharge). This correction
method is derived from a previous result in a study conducted
in Virginia (Sanford et al. 2012). In the current study, the total re-
charge product is compared with SWAT recharge estimates.

Results and Discussion

Sensitivity Analysis and Calibration Results

To identify the optimal set of parameters for performing the cali-
bration step, we first quantified the sensitivity of several important
model parameters for predicting both streamflow and baseflow pat-
terns commonly used for calibration, especially in SWAT models
(Table 1). These results are summarized in Fig. 3. For streamflow,
the model is most sensitive to the soil evaporation compensation
factor (ESCO), as labeled in SWAT 2012, followed by the baseflow
recession constant (ALPHA_BF), soil available water content
(SOL_AWC), and curve number (CN2), coinciding with Musyoka
et al. (2021), except for the baseflow recession constant, as the most
sensitive factors for streamflow. For baseflow, the model is most
sensitive to curve number, followed by the soil compensation fac-
tor, and soil available water content. These results agree with
Musyoka et al. (2021), who found that the most sensitive param-
eters for streamflow were curve number, soil available water con-
tent, and soil compensation factor; for groundwater flow, the
threshold depth for return flow of water in the shallow aquifer
(GWQMN), curve number, soil available water content, deep aqui-
fer percolation fraction (RCHRG_DP), groundwater revap coeffi-
cient (GW_REVAP), saturated hydraulic conductivity (mm=hr)
(SOL_K), and soil compensation factor. After identifying the most
sensitive parameters, these values were perturbed again, using the
Latin hypercube sampling method to fine-tune and calibrate the
model to obtain the best performance. The results of this analysis
are shown in Figs. 4 and 5. These figures show that there is an
agreement among the values of ALPHA_BF and SOL_AWC that
are needed to achieve good model performance for predicting
both streamflow and baseflow. However, the level of adjustment
to the curve number needed to achieve the best performance in
streamflow prediction is around −3%, while for baseflow predic-
tion is aroundþ10%. Similarly, the best performance in streamflow
is achieved with an ESCO ¼ 0.85. In contrast, ESCO ¼ 1 produces
the best performance when the target is baseflow prediction.

The comparison of data presented in Figs. 4 and 5 indicates
that the model was able to better reproduce monthly streamflow
values (NSE values above 0.8) than annual baseflow values (maxi-
mum NSE values around 0.4). Based on these results, various com-
binations of curve numbers and ESCO values were adjusted

Table 2. Datasets

Data Source Notes

Digital elevation modela USGS National Map Download Service Resolution: 1 arc-second (30 m approximately)
Soil data STATSGO Provided in Arc SWAT
Land use/land coverb NLCD NLCD 2016
Weather datac NCEP CFSR Daily data from January 1, 1997 to December 31, 2013
Streamflowd USGS NWIS Daily data from January 1, 1997 to December 31, 2013
Annual rechargee Science-Base Catalog Annual averages from 2000 to 2013
Annual ETe Science-Base Catalog Annual averages from 2000 to 2013
ahttps://data.usgs.gov/datacatalog/data/USGS:3a81321b-c153-416f-98b7-cc8e5f0e17c3.
bhttps://www.mrlc.gov/data/nlcd-2016-land-cover-conus.
chttps://swat.tamu.edu/data/cfsr.
dhttps://waterdata.usgs.gov/nwis.
ehttps://doi.org/10.5066/f7pn93p0.

Table 3. USGS Streamgauges used for calibration

Station ID USGS station name

02465000 Black Warrior River, Northport AL
02448500 Noxubee River Nr, Geiger, AL
02469761 Tombigbee R At, Coffeeville, AL

© ASCE 04023019-5 J. Hydrol. Eng.
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manually through a trial-and-error process to calibrate the model to
yield acceptable fits for both streamflow and baseflow datasets. The
calibrated optimal model parameter values are presented in Table 4.

Monthly streamflow and annual baseflow values simulated by the
calibrated SWATmodel are compared with the field data measured at
the outlet of the Basin in Figs. 6 and 7, respectively. In addition, the
model performance metrics for the three calibration/validation sta-
tions are summarized in Table 5. Streamflow prediction performance
is good for the three locations; coefficient of determination (R2) val-
ues are above 0.65 for all stations, while NSE values are greater than
0.61. For baseflow prediction, R2 values are above 0.53. While the
NSE values at Northport and Geiger are a bit low, the simulated val-
ues closely follow the estimates given by PART. The reason for these

low NSE values is that baseflow predictions for the year 2009 (the
wettest in the period of analysis) deviated significantly from PART
estimates, and because the time series contains only 11 points, the
NSE value is highly penalized by this outlier. Overall, the SWAT
model can adequately reproduce the dynamics of streamflow and
baseflow in the Basin.

Comparison of Temporal Variations in Basin-Scale
Recharge Estimates

Total recharge estimates from Reitz et al. (2017) were compared
with the SWAT model’s shallow aquifer recharge estimates (output
as GW_RCHG in SWAT files). For temporal comparison, results

Fig. 3. FAST relative sensitivity [fraction of variance attributed to each parameter (unitless)] of baseflow and monthly streamflow at the Coffeeville
Basin outlet to various parameters.

Fig. 4. Variations in model performance (monthly streamflow) to the most sensitive model parameters (ALPHA-BF, CN2, ESCO, SOL, and_AWC)
at the Coffeeville Basin outlet, generated using the Latin hypercube sampling method.
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from both models (USGS and SWAT) were spatially averaged over
the entire Basin. Fig. 8 shows the annual average recharge volumes
for the Black Warrior—Tombigbee Basin, along with the baseflow
values derived using PART and the precipitation estimates used in
each model. We can observe that the two recharge estimates are in
good agreement. The NSE is equal to 0.84, R2 is equal to 0.83,
percent bias (PBIAS) is equal to 0.4, and the root mean squared
error (RMSE) is equal to 46 mm.

Between 2000 and 2013, the mean recharge value was 256 mm=
year (12.36 km3) (18% of precipitation) according to the SWAT

model, while the USGS model estimate is 257 mm (12.41 km3),
which is equivalent to 17% of precipitation. It is important to note
that each model uses a different data source for precipitation. The
SWAT model uses precipitation from the CFSR dataset, which es-
timates an average annual rate equal to 1,415 mm (68.34 km3). The
USGS model uses the PRISM dataset from the PRISM Climate
Group at the University of Oregon. Average precipitation from
the PRISM dataset is slightly higher and equals 1,481 mm=year
(71.53 km3). From Fig. 8 we can observe a strong correlation

Fig. 5. Variations in model performance (annual baseflow) to the most sensitive parameters (ALPHA-BF, CN2, ESCO, SOL, and_AWC) at the
Coffeeville Basin outlet, generated using the Latin hypercube sampling method.

Table 4. Range of calibrated model parameter values

Parameter Parameter name in SWAT Values

Curve number for moisture condition II (unitless) CN2 62–92
Soil available water content (unitless) SOL_AWC 0.1–0.24
Soil evaporation compensation factor (unitless) ESCO 0.88
Baseflow recession constant (αgw) (unitless) ALPHA_BF 0.89

Fig. 6. Simulated versus observed monthly streamflow at the Basin
outlet near Coffeeville.

Fig. 7. Simulated versus observed annual baseflow at the Basin outlet
near Coffeeville (baseflow values estimated by PART).
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between precipitation estimates (R2 ¼ 0.85); however, PRISM
tends to slightly overestimate with respect to CFSR (PBIAS ¼ 4.7)
based estimates.

Recharge Estimates—Spatial Comparison

The annual recharge estimates for the driest (2007) and the wettest
(2009) years were selected for the spatial analysis. The SWAT
model estimates at the HRU level were rasterized at an 800 m res-
olution to allow comparison with the USGS data products at
every pixel.

Fig. 9 presents the following information: (a) the SWAT model
annual recharge estimates throughout the Basin for the year 2007,
(b) USGS recharge estimates, and (c) the difference between USGS
estimates and SWAT estimates. Note, Fig. 9(c) helps to show re-
gions where USGS data underpredicts with respect to the SWAT
estimates (positive values), where USGS data overpredicts (nega-
tive values), and where both data products agree (values near zero).

In 2007, the Black Warrior-Tombigbee basin received 92 mm
(4.44 km3) of recharge according to the SWAT model, while the
USGS model estimates 48 mm (2.32 km3), an average difference
of 44 mm, or a relative error of 48% (considering the SWAT model
as the true value). The USGSmodel generally underpredicts for this
dry year across the Basin, as we can observe in Fig. 9(c), with pos-
itive values (blue) more commonly observed through the entire
Basin.

Discrepancies at the 800 m scale are significantly larger when
compared to discrepancies observed at the basin scale in the tem-
poral analysis. The coefficient of determination between recharge
estimates at the 800 m scale across the Basin is R2 ¼ 0.16, and the
RMSE is 65 mm. We The SWAT model predictions are more
heterogeneous in space than the USGS model, as indicated by
the coefficient of variation (CV). The mean CVof SWAT recharge
estimates between 2000 and 2013 is 0.67, while USGS recharge
estimates present a lower mean value equal to 0.51.

Because the annual recharge estimates from the USGS model
are the residual of the water budget after estimating ET, it is ex-
pected that differences in ET estimates between models are to some
degree related to the differences in recharge estimates. For the year
2007, the SWAT model predicts 733 mm of ET, while the USGS
model predicts 745, a difference of 12 mm or a relative error of 2%.
As noted in the comparison of recharge products, the agreement
between models reduces significantly at finer scales. As we can
observe in Fig. 10(c), the models show absolute differences of
300 mm at the 800 m resolution. The correlation coefficient for
this year is R2 ¼ 0.04, and the RMSE is equal to 135 mm.

As we can observe in Fig. 10(c), the USGS model overpredicts
ET and underpredicts recharge in the northern portion of the Basin,
as shown in Fig. 9(c). Similarly, on the east bank of the Tombigbee
River (in the eastern portion of the Basin), the USGS model under-
predicts ET, while it overpredicts recharge. Overall, there is no
agreement in the spatial pattern of ET between the two models.
The SWAT model predicts higher ET values in the southern region,
while the USGS model has no specific pattern. There are some lo-
cal agreements; for example, in a small portion of the eastern bank
of the Tombigbee River, both models predict lower ET than in its
surroundings.

The wettest year during the period of analysis is 2009, having an
average annual precipitation of 1,955 mm (94.43 km3). As shown
in Fig. 11, recharge is estimated as 524 mm (25.31 km3) according
to the SWAT model, and 493 mm (23.81) according to USGS es-
timates, a difference of 31 mm or a relative error of 6%. The spatial
distribution of recharge for this year is marginally more consistent
between the two models: R2 ¼ 0.29, and RMSE ¼ 227 mm. In
Fig. 11, we can observe a half-moon-shaped region of lower

Table 5. Model performance at the calibration stations

Station name

Streamflow Baseflow

NSE R2 NSE R2

Northport 0.72 0.68 −0.09 0.54
Geiger 0.61 0.67 0.01 0.53
Coffeeville 0.76 0.76 0.32 0.72

Fig. 8. Comparison of SWAT model predicted recharge averaged over
the entire Basin compared to USGS. The figure also compares CFSR
precipitation data used by SWATwith the PRISM data used by USGS.
(Data from Reitz et al. 2017.)

Fig. 9. Dry year recharge estimates (2007): (a) SWAT estimates; (b) USGS estimates; and (c) difference (a − b).
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recharge that is present in both models, indicating higher values on
the eastern bank of the Tombigbee River. However, while the
SWAT model predicts a low-recharge zone in the northeastern por-
tion of the Basin, the USGS model fails to capture this lower re-
charge zone.

ET in 2009 is estimated to be 826 mm by the SWAT model,
while the USGS model estimates 940 mm, a difference of 114 mm
or a relative error of 14%. There is not much consistency in the
spatial pattern, as indicated by the low correlation coefficient value
of R2 ¼ 0.06, and RMSE ¼ 160 mm. The USGS model estimates
very high values throughout the Basin except for a small portion on
the western bank of the Tombigbee River. As shown in Fig. 12(c),
there are very few areas that show good agreement (shaded in
yellow).

Influences Various Forcing on Seasonal Groundwater
Recharge Dynamics

The finer temporal resolution of the SWAT model allows us to
assess the seasonal dynamics of recharge and the impact of precipi-
tation, ET, and soil moisture on it. Fig. 13 shows the monthly dy-
namics of the net water flux into the surface precipitation minus ET
(PCP − ET), the water flux into the subsurface precipitation minus
ET minus runoff (PCP–ET − QF), soil water content (SWC), and
groundwater recharge. During the period of analysis, recharge oc-
curred mainly from December to May, when the monthly net water
flux (PCP − ET) correlates better with monthly recharge according
to Pearson’s correlation coefficient (ρ) (ρ ¼ 0.45). The period from
December to May also coincides with high values of soil water

content. In contrast, between June and November, when the soil
water content is low, monthly recharge correlates less with the flux
of water into the surface (ρ ¼ 0.33). As we can observe, during this
period (June–November) the net water flux increases consistently
on average, while recharge remains constant at values near zero.
The result highlights that soil moisture helps to determine the
extent to which PCP-ET influences groundwater recharge.

Conclusion and Recommendations

In this study, we modeled the groundwater recharge pattern over
a 48,300 km2 river basin in the southeastern US using a semi-
distributed hydrologic model, SWAT. We compared the pro-
cess-model-based recharge results with the data-derived USGS
recharge product provided by Reitz et al. (2017). The two datasets
exhibited good agreement (NSE ¼ 0.84, R2 ¼ 0.83) at the basin
scale. The study also found that notable discrepancies exist at the
finer 800 m scale estimates of groundwater recharge. There is a
weak correlation (R2 ¼ 0.16 for the driest year, and R2 ¼ 0.29 for
the wettest year), and the RMSEs are significantly large relative
to basin-wide mean values. These results suggest that the applica-
tion of the empirical equations derived by Reitz et al. (2017) at the
basin scale might not be valid at lower scales. While we cannot
conclude that the SWAT model results at the HRU or 800 m scale
are more accurate, we do point out the need for groundwater re-
charge data at finer spatial and temporal scales to better calibrate
and verify recharge models. The study outcomes also highlight that
soil moisture conditions could better determine the extent to which

Fig. 10. ET estimates (2007): (a) SWAT estimates; (b) USGS estimates; and (c) difference (a − b).

Fig. 11. Wet year recharge estimates (2009): (a) SWAT estimates; (b) USGS estimates; and (c) difference (a − b).
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precipitation and evapotranspiration processes influence ground-
water recharge.

The USGS recharge and ET products are based on regression
equations fitted with data at a basin scale, which might explain
why the agreement between model estimates occurs at larger scales.
When these equations were used to obtain recharge and ET values
at the fine 800 m scale, the relationships found at the basin scale
by the regression equations were not necessarily preserved. We
hypothesize that this mismatch of scales is a potential cause of the
poorer agreement between the two estimates. However, our model,
and also other models available in the literature, require validation
and ground-truthing recharge datasets evaluated at subbasin scales
to further test this hypothesis. In general, more direct recharge mea-
surements are needed to validate hydrologic models that aim to re-
solve processes at subbasin scales. While using baseflow as a proxy
for groundwater recharge might be adequate for coarser scales
(regional or larger), there are limitations in using baseflow data
to resolve processes at finer scales. Having more fine recharge mea-
surements will help accelerate the process of model development and
testing, advancing our understanding of the recharge processes.
However, because large-scale measurement campaigns are cost pro-
hibitive, the next intermediate step could be to study an area where
other recharge models are available and use three-point estimation
methods to assess the uncertainty of these recharge models and iden-
tify the physical characteristics associated with high-uncertainty
areas to identify appropriate benchmarking field sites for conducting
detailed water balance studies. Additionally, probabilistic models

could be developed to provide a range of values for recharge
estimates.
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